Structural Evolution of ZnO Polyol-Derived Nanomaterials

Article Preview

Abstract:

Zinc oxide (ZnO) has been intensively used in several technological applications. ZnO nanostructures with different morphologies are typically produced using the solid-vapor phase, hydrothermal methods, electrochemical deposition, molecular beam epitaxy and soft chemical solution methods. We have synthesized ZnO in diethyleneglycol using zinc acetate or zinc nitrate as a precursor compound. The morphology and the size of the resulting oxide particles were adjusted by using an acidic medium. The nanomaterials annealed at different temperatures (500-1000 °C) were structurally characterized and the morphology was observed. The synthesized ZnO nanocrystals have a hexagonal wurtzite structure and the maximum of UV-Vis spectrum was between 368-370 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-76

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.P. Snedeker, A.S. Risbud, O. Masala, J. P. Zhang, R. Seshadri, Solid State Sciences, 7 (2005) pp.1500-1505.

DOI: 10.1016/j.solidstatesciences.2005.08.020

Google Scholar

[2] D. Bao, H. Gu and A. Kuang, Thin Solid Films, 312 (1998) pp.37-39.

Google Scholar

[3] J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park, S. Im, Thin Solid Films, 403 (2002) pp.553-557.

Google Scholar

[4] Z.S. Wang, C.H. Huang, Y.Y. Huang, Y.J. Hou, P.H. Xie, B.W. Zhang, H.M. Cheng, Chemical Materials, 13 (2001) pp.678-682.

Google Scholar

[5] J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z.Z. Tian, Sensors and Actuators B - Chemical, 66 (2000) pp.277-279.

Google Scholar

[6] F. Rataboul, C. Nayral, M. -J. Casanove, A. Maisonnat, B. Chaudret, Journal of Organometallic Chemistry, 643/644 (2002) pp.307-312.

DOI: 10.1016/s0022-328x(01)01378-x

Google Scholar

[7] W.D. Yu, X.M. Li, X.D. Gao, Crystal Growth & Design, 5 (1) (2005) pp.151-155.

Google Scholar

[8] M. M. Demir, R. Munoz-Espi, I. Lieberwirth, G. Wegner, Journal of Materials Chemistry, 16 (2006) pp.2940-2947.

Google Scholar

[9] Tang H, Yan M, Ma X, Zhang H, Wang M and Yang D, Sensors and Actuators B-Chemistry, 113 (2006) pp.324-328.

Google Scholar

[10] U. Pal, S.P. Garcia, G. Xiong, K.B. Ucer and R.T. Williams, Optical Materials, 29 (2006) pp.65-69.

Google Scholar

[11] L. Poul, S. Ammar, N. Jouini, F. Fievet, Journal of Sol-Gel Science & Technology, 26 (2003) pp.261-265.

DOI: 10.1023/a:1020763402390

Google Scholar

[12] E.M. Wong, P.G. Hoertz, C.J. Liang, B.M. Shi, G.J. Meyer, P.C. Searson, Langmuir, 17 (2001) pp.8362-8367.

DOI: 10.1021/la010944h

Google Scholar

[13] S. Komarneni, M. Bruno, E. Mariani, Materials Research Bulletin, 35 (2000) pp.1843-1847.

Google Scholar

[14] R. Bazzi, M.A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, P. Perriat, Journal of Luminescence, 102-103 (2003) pp.445-450.

DOI: 10.1016/s0022-2313(02)00588-4

Google Scholar

[15] A. Hernandez, L. M. Torres-Martinez, T. Lopez, Materials Letters, 54 (2002) pp.62-69.

Google Scholar

[16] S. Bandyopadhyay, G.K. Paul, R. Roy and S.K. Sen, Materials Chemistry Physics, 74 (2002) pp.83-91.

Google Scholar

[17] H. Ruoyu, P. Tingting, Q. Jianzhong, L. Hongzhong, Chemical Engineering Journal, 119 (2006) pp.71-78.

Google Scholar

[18] R.S. Yadav, P. Mishra, A.C. Pandey, Ultrasonics Sonochemistry, 15 (2008) pp.863-868.

Google Scholar

[19] K. D. Bhatte, S. -I. Fujita, M. Arai, A. B. Pandit, B. M. Bhanage, Ultrasonics Sonochemistry, 18 (2011) pp.54-58.

DOI: 10.1016/j.ultsonch.2010.06.001

Google Scholar

[20] N.S. Pesika, K.J. Stebe, P.C. Searson, Journal of Physical Chemistry B, 107 (2003) pp.10412-10415.

Google Scholar