Influence of Shell Thickness on the Raman Properties of ZnO/ZnS Core/Shell Nanowires

Article Preview

Abstract:

Well aligned ZnO nanowire arrays are fabricated by a simple vapor phase transport process. Field-emission scanning electron microscopy shows the nanorods have a uniform length of about 1 um with diameters of 100 nm. After modified by ZnS, ZnO/ZnS core/shell nanowire arrays are formed and the thickness of ZnS layer increase with the increase of treatment time. X-ray diffraction analysis confirms that the as-synthesized ZnO nanorods are c-axis orientated, the modification of ZnS shell induces weak ZnS (100) diffraction peak for the treatment time of 180 min. The effects of shell thickness as a function of ZnS treatment time on the Raman scattering properties are studied. The results suggest that the coating of ZnS shell will change the Raman energy position and intensity of the ZnO nanowires, crystal lattice expansion and reconstruction of the ZnO/ZnS interface are responsible for the observed changes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-179

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang R. C., H. Y. Lin: Applied Physics A: Material Science & Processing Vol. 95(2009), pp.813-818.

Google Scholar

[2] C. L Yang, J. N. Wang, W. K. Ge, et al.: Journal of Applied Physics Vol. 90(2001), pp.4489-4493.

Google Scholar

[3] J. J. Lee, J. Bang, H. Yang: Journal of Physics D: Applied Physics Vol. 42(2009), pp.025305-025308.

Google Scholar

[4] H.Y. Li, O. Wunnicke, M.T. Borgstorm, et al.: Nano Letter Vol. 7(2007), pp.1144-1148.

Google Scholar

[5] Klingshim: Physical Status Solid (b) Vol. 71(1975), pp.547-556.

Google Scholar

[6] J. H. Song, X. D. Wang, E. Riedo, et al: Nano Letter Vol. 5(2005), p.1954-(1958).

Google Scholar

[7] J. P. Richters, T. Voss, S. D. Kim, et al: Nanotechnology Vol. 19(2008), pp.305202-305205.

Google Scholar

[8] L. Yu, X. F. Yu, Y. F. Qiu, et al: Chemical Physics Letters Vol. 465(2008), pp.272-274.

Google Scholar

[9] S. Han, D.H. Zhang, C. W. Zhou: Applied Physics Letters Vol. 88(2006), pp.133109-3.

Google Scholar

[10] M. X. Qiu, Z. Z. Ye, H. P. He: Journal of Physics D: Applied Physics Vol. 41(2008), pp.85109-6.

Google Scholar

[11] L.W. Yin, M. S. Li, Y. Bando, et al: Advanced Functional Material Vol. 17(2007), pp.270-276.

Google Scholar

[12] F. Li, Y. Jiang, L. Hu, et al: Journal of Alloys and Commpound Vol. 474(2009), pp.531-535.

Google Scholar

[13] C. H. Ahn, S. K. Mohanta, B. H. Kong, et al: Journal of Physics D: Applied Physics Vol. 42(2009), pp.115106-7.

Google Scholar

[14] A. V. Baranov, Y. P. Rakovich, J. F. Donegan, et al: Physical Review. B Vol. 68(2003), pp.165306-7.

Google Scholar

[15] G. Y. Shan, L. H. Xu, G. R. Wang, et al: Journal of Physics Chemistry C Vol. 111(2007), pp.3290-3293.

Google Scholar

[16] X.Q. Meng, D.Z. Shen, J.Y. Zhang, et al: Solid State Communications Vol. 179 (2005) pp.135-138.

Google Scholar

[17] J. H. Li, D. X. Zhao, X. Q. Meng, et al: Journal of Physics Chemistry B Vol. 111(2006), pp.14685-14687.

Google Scholar

[18] T. C. Damen, S. P. S. Porto, B. Tell: Physical Review Vol. 142(1966), pp.570-574.

Google Scholar