A Novel Ammonia Sensor Utilizing Cataluminescence on Nano-TiW3Cr2O14

Article Preview

Abstract:

A new sensor based on cataluminescence (CTL) produced on the surface of nanosized TiW3Cr2O14 was demonstrated for direct determination of ammonia in air. Trace ammonia was firstly absorbed on active carbon at room temperature to concentrate, then desorbed at 105°C to determine. The sensor showed high selectivity to ammonia at wavelength of 540 nm, satisfying activity at temperature of 275°C and good stability at air carrier flow rate of 115 ml/min. The linear range of CTL intensity versus concentration of ammonia was 1.0~50 mg/m3 (γ=0.9990), and the detection limit (3σ) was 0.5 mg/m3. The recovery of artificial sample was 97.45%—102.73% by this method. There was no response to benzene, SO2, CO and formaldehyde, and insignificant response to ethanol. This gas sensor allows on-line monitoring of ammonia in air.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-188

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. V. Hieu, V. V. Quang, N. D. Hoa, D. Kim, Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route, Current Applied Physics Vol. 11 (2011), pp.657-661.

DOI: 10.1016/j.cap.2010.11.002

Google Scholar

[2] G.N. Chaudhari, S.V. Jagtap, N.N. Gedama, M.J. Pawar, V.S. Sangawar, Sol–gel synthesized semiconducting LaCo0. 8Fe0. 2O3-based powder for thick film NH3 gas sensor, Talanta Vol. 78 (2009), pp.1136-1140.

DOI: 10.1016/j.talanta.2009.01.030

Google Scholar

[3] P. K. Sekhar, E. L. Brosha, R. Mukundan, W. Li, M. A. Nelson, P. Palanisamy, F. H. Garzon, Application of commercial automotive sensor manufacturing methods for NOx/NH3 mixed potential sensors for on-board emissions control, Sensors and Actuators B Vol. 144 (2010).

DOI: 10.1016/j.snb.2009.10.045

Google Scholar

[4] K. Choi, J. Park, K. Park, H. Kim, H. Park, S. Kim, Low power micro-gas sensors using mixed SnO2 nanoparticles and MWCNTs to detect NO2, NH3, and xylene gases for ubiquitous sensor network applications, Sensors and Actuators B Vol. 150 (2010).

DOI: 10.1016/j.snb.2010.07.041

Google Scholar

[5] P. Su, C. Lee, C. Chou, Flexible NH3 sensors fabricated by in situ self-assembly of polypyrrole, Talanta Vol. 80 (2009), pp.763-769.

DOI: 10.1016/j.talanta.2009.07.057

Google Scholar

[6] N. Peng, Q. Zhang, Y. Lee, O. Tan, N. Marzari, Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors, Sensors and Actuators B Vol. 132 (2008), pp.191-195.

DOI: 10.1016/j.snb.2008.01.025

Google Scholar

[7] M. Breysse, B. Claudel, L. Faure, M. Guenin, R.J. Williams, T. Wolkenstein, Chemi- luminescence during the catalysis of carbon monoxide oxidation on a thoria surface, J. Catal. Vol. 45 (1976), pp.137-144.

DOI: 10.1016/0021-9517(76)90129-9

Google Scholar

[8] T. Okabayashi, T. Fujimoto, I. Yamamoto, K. Utsunomiya, T. Wada, Y. Yamashita, N. Yamashita, M. Nakagawa, High sensitive hydrocarbon gas sensor utilizing cataluminescence of gamma-Al2O3 activated with Dy3+, Sens. Actuators B Vol. 64 (2000).

DOI: 10.1016/s0925-4005(99)00483-9

Google Scholar

[9] T. Okabayashi, T. Toda, I. Yamamoto, K. Utsunomiya, N. Yamashita, M. Nakagawa, Temperature-programmed chemiluminescence measurements for discrimination and determination of fragrance, Sens. Actuators B Vol. 74 (2001), pp.152-156.

DOI: 10.1016/s0925-4005(00)00725-5

Google Scholar

[10] P. McCord, S.L. Yau, A.J. Bard, Chemiluminescence of anodized and etched silicon: evidence, science Vol. 257 (1992), pp.68-71.

DOI: 10.1126/science.257.5066.68

Google Scholar

[11] L. Koning, I. Rabin, W. Schulze, G. Ertl, Chemiluminescence in the agglomeration of metal clusters, science Vol. 274 (1996), pp.1353-1355.

DOI: 10.1126/science.274.5291.1353

Google Scholar

[12] K.W. Zhou, P. Zhang, W. Chen, A Gaseous Ethanol Sensor Based on Cataluminescence on Nanometer Composite Oxide, Acta Chim. Sinica Vol. 68 (2010), pp.921-925.

Google Scholar

[13] K.W. Zhou, H.W. Yang, P. Zhang, W. Chen, A sensitive benzene gas sensor utilizing thermal desorption coupled with cataluminescence, IEEE Int. Third ICMTMA (2011), pp.258-261.

Google Scholar

[14] K.W. Zhou, X.R. Zhang, Determination of butanone in workshop air utilizing chemiluminescence on nanosized materials, Chinese Journal of Analytical Chemistry Vol. 32 (2004), pp.25-28.

Google Scholar

[15] Z.Y. Zhang, H.J. Jiang, Z. Xing, X.R. Zhang, A highly selective chemiluminescent H2S sensor, Sens. Actuators B Vol. 102 (2004), pp.155-161.

DOI: 10.1016/j.snb.2004.04.015

Google Scholar

[16] K.W. Zhou, X.L. Ji, N. Zhang, X.R. Zhang, On-line monitoring of formaldehyde in air by cataluminescence - based gas sensor, Sens. Actuators B Vol. 119 (2006), pp.392-397.

DOI: 10.1016/j.snb.2005.12.038

Google Scholar

[17] L. Tang, Y. Li, K. Xu, X. Hou, Y. Lv, Sensitive and selective acetone sensor based on its cataluminescence from nano-La2O3 surface, Sens. Actuators B Vol. 132 (2008), pp.243-249.

DOI: 10.1016/j.snb.2008.01.031

Google Scholar