Growth Mechanism and Optical Properties of Bundle-Like ZnO Nanostructures Synthesized by a Sonochemical Method

Article Preview

Abstract:

Bundle-like ZnO nanostructure was rapidly synthesized by a sonochemical method at 70 °C, using zinc nitrate, citric acid, ammonia, and sodium hydroxide as reactants. The resulting materials were characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence measurements. The bundle-like nanostructure was formed by the anisotropic growth of the ball-like nanostructure. The room-temperature PL spectrum of the bundle-like nanostructure exhibits a weak ultraviolet emission band and a strong visible emission.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

345-349

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Huang, S. Mao, H. Feick et al: Science Vol. 292 (2001), pp.1897-9.

Google Scholar

[2] Z.W. Pan, Z.R. Dai and Z.L. Wang: Science Vol. 291 (2001), pp.1947-9.

Google Scholar

[3] J. Zhang, L.D. Sun, C.S. Liao et. al: Chem. Commun. Vol. 3 (2002), pp.262-3.

Google Scholar

[4] L. Guo, Y.L. Ji, H.B. Xu et al: J. Am. Chem. Soc. Vol. 124 (2002), pp.14864-5.

Google Scholar

[5] X.Y. Kong, Y. Ding, R.S. Yang et. al: Science Vol. 303 (2004), pp.1348-51.

Google Scholar

[6] H.Q. Yan, R.R. He, J. Johnson et al: J. Am. Chem. Soc. Vol. 125 (2003), pp.4728-9.

Google Scholar

[7] H.J. Fan, R. Scholz, F.M. Kolb et al: Solid State Commun. Vol. 130 (2004), pp.517-21.

Google Scholar

[8] H.Q. Yan, R.R. He, J. Pham et al: Adv. Mater. Vol. 15 (2003), pp.402-5.

Google Scholar

[9] P.X. Gao and P.D. Wang, J. Phys. Chem. B Vol. 106 (2002), pp.12653-8.

Google Scholar

[10] J.G. Wen, J.Y. Lao, D.Z. Wang et al: Chem. Phys. Lett. Vol. 372 (2003), pp.717-22.

Google Scholar

[11] L. Vayssieres, Adv. Mater. Vol. 15 (2003), pp.464-6.

Google Scholar

[12] K.S. Suslick, S.B. Choe, A.A. Cichowlas et al: S Nature Vol. 353 (1991), pp.414-6.

Google Scholar

[13] S.H. Jung, E. Oh, K.H. Lee et al: Adv. Mater. Vol. 19 (2007), pp.749-53.

Google Scholar

[14] A. Guinier: X-Ray Diffraction (Freeman, San Francisco 1963).

Google Scholar

[15] M.L. Fuller: J. Appl. Phys. Vol. 15 (1944), pp.164-70.

Google Scholar

[16] Y. Dai, Y. Zhang and Z.L. Wang, Solid State Commun. Vol. 126 (2003), pp.629-33.

Google Scholar

[17] Y. Zhang and J. Mu: Nanotechnology Vol. 18 (2007), p.075606.

Google Scholar

[18] W.J. Li, E.W. Shi, W.Z. Zhong et al: J. Cryst. Growth Vol. 203 (1999), pp.186-96.

Google Scholar

[19] M. Law, L.E. Greene, J. Goldberger et al: Angew. Chem. Int. Edit. Vol. 42 (2003), pp.3031-4.

Google Scholar

[20] D. Li, Y.H. Leung, A.B. Djurisic et al: Appl. Phys. Lett. Vol. 85 (2004), pp.1601-3.

Google Scholar

[21] A.B. Djurisic, Y.H. Leung, K.H. Tam et al: Nanotechnology Vol. 18 (2007), p.0957029.

Google Scholar