Passive Q-Switching with Graphene Saturable Absorber in Nd:YAG Operating at 1064nm

Article Preview

Abstract:

A graphene-PVA film is fabricated by using polyvinyl alcohol(PVA), which provides excellent mechanical property and easy operation. Based on the numerous advantages of graphene in optical and mechanical characteristics,Graphene was used as absorber with passively Q-switched Nd:YAG solid laser in our experiment. Furthermore, there are no changes in the structure and characteristics of graphene. Inserting our graphene-PVA SA mirror to the Nd: YAG laser, we ultimately get that the single pulse energy is about 7.68μJ, and that the shortest pulse width is about 640ns. The experiment results prove that our graphene-PVA SA mirror is feasible and suitable for Q-switched lasers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

700-703

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller H.L. Offerhaus D.J. Richardson, Passively Q-switched 0. 1mJ fiber laser system at 1. 53μm, , Opt. Lett. 24, 388, (1999).

DOI: 10.1364/ol.24.000388

Google Scholar

[2] M. Siniaeva, M. Siniavsky, V. Pashinin, A. Mamedov,V. Konov, V. Kononenko, Laser ablation of dental materials using a microsecond Nd: YAG laser, , Laser Phys. 19, 1056, (2009).

DOI: 10.1134/s1054660x09050314

Google Scholar

[3] M. Laroche A.M. Chardon,J. Nilsson D.P. Shepherd W.A. Clarkson,S. Girard,R. Moncorge, Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser, , Opt. Lett. 27, 1980 , (2002).

DOI: 10.1364/ol.27.001980

Google Scholar

[4] Oleg Okhotnikov , Anatoly Grudinin and Markus Pessa, Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications, New J. Phys. 6, 177, (2004).

DOI: 10.1088/1367-2630/6/1/177

Google Scholar

[5] Samuli Kivistö, Tommi Hakulinen, Antti Kaskela, Brad Aitchison, David P. Brown, Albert G. Nasibulin, Esko I. Kauppinen, Antti Härkönen, and Oleg G. Okhotnikov, Carbon nanotube films for ultrafast broadband technology, Opt. Express 17, 2358, (2009).

DOI: 10.1364/oe.17.002358

Google Scholar

[6] W.B. Cho, J.H. Yim, S.Y. Choi, S. Lee, U. Griebner,V. Petrov, and F. Rotermund, Mode-locked self-starting Cr: forsterite laser using a single-walled carbon nanotube saturable absorber, Opt. Lett. 33, 2449, (2008).

DOI: 10.1364/ol.33.002449

Google Scholar

[7] A. Schmidt, S. Rivier, W.B. Cho, J.H. Yim, S.Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, Sub-100fs single-walled carbon nanoube saturable absorber mode-locked Yb-laser operation near 1μm, Opt. Express 17, 20109, (2009).

DOI: 10.1364/oe.17.020109

Google Scholar

[8] T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes, , Opt. Express 13, 8025, (2005).

DOI: 10.1364/opex.13.008025

Google Scholar

[9] K.S. Novoselov, A.K. Geim, A.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films , Science, 306, 666, (2004).

DOI: 10.1126/science.1102896

Google Scholar

[10] K. S. Novoselov, A. K. Geim, A. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Two-dimensional gas of massless dirac fermions in graphene, Nature, 438, 197, (2005).

DOI: 10.1038/nature04233

Google Scholar

[11] F. Bonaccors, Z. sun, T. Hasan and A.C. ferrai, Graphene Photonics and Optoelectronics, Nat. Photonics 4, 611, (2010).

Google Scholar

[12] T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin and A. C. Ferrari, Nanotube-Polymer Composites for Ultrafast Photonics, Adv. Mater. 21, 3874, (2009).

DOI: 10.1002/adma.200901122

Google Scholar

[13] A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6, 183, (2007).

Google Scholar

[14] Z. Sun, T. Hasant, F. Torrisit, D. Popat, G. Priviterat, F. Wang, F. Bonaccorsot, D. M. Basko and A. C. Ferrari, Graphene Mode-Locked Ultrafast Laser, ASC Nano. 4(2), 803, (2010).

Google Scholar

[15] Han Zhang, Dingyuan Tang, R.J. Knize, Luming Zhao, Qiaoliang Bao and Kian Ping Loh, Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser, Appl. Phys. Lett. 96(11), 1112, (2009).

DOI: 10.1063/1.3367743

Google Scholar

[16] Zhengqian Luo, Min Zhou, Jian Weng, Guoming Huang, Huiying Xu, Chenchun Ye, and Zhiping Cai, Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser, Opt. Lett. 35(21), 3709, (2010).

DOI: 10.1364/ol.35.003709

Google Scholar

[17] D. popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang and A. C. Ferrari, Graphene Q-switched, tunable fiber laser, Appl. Phys. Lett. 98(07), 3106, (2011).

DOI: 10.1063/1.3552684

Google Scholar

[18] Haohai Yu, Xiufang Chen, Huaijin Zhang, Xiangang Xu, Xiaobo Hu, Zhengping Wang, Jiyang Wang, Shidong Zhuang, and Minhua Jiang, Large Energy Pulse Generation Modulated by Graphene Epitaxially Grown on Silicon Carbide, ACSNano. 4(12), 7582, (2010).

DOI: 10.1021/nn102280m

Google Scholar