Ionic Transport under Chemical Potential Gradients - Kinetic Demixing and Decomposition in Metal Oxides and Scale Growth in High-Temperature Oxidation

Article Preview

Abstract:

In oxides which are exposed to thermodynamic potential gradients, transport processes of the mobile components occur. These transport processes and the coupling between different processes are not only of fundamental interest, but are also the origin of degradation processes, such as kinetic demixing, kinetic decomposition, and changes in the morphology of the material. The kinetics of high temperature oxidation processes of metals can be studied in situ by X-ray absorption spectroscopy (XAS), optical microscopy and X-ray diffraction (XRD) at elevated temperatures and defined oxygen partial pressures. As an example, the in situ XAS investigation of the oxidation of cobalt, forming layers of CoO and Co3O4, will be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-33

Citation:

Online since:

September 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.J. Grabke, M. Schütze (Eds. ): Oxidation of intermetallics (Wiley-VCH, Weinheim, 1997).

Google Scholar

[2] U. Koops, D. Hesse and M. Martin: J. Mater. Res. Vol. 17 (2002), p.2489.

Google Scholar

[3] E. Ryshkewitch, D.W. Richerson: Oxide Ceramics (Academic, Orlando, 1985).

Google Scholar

[4] A. Hammou, J. Guindet, in: The CRC Handbook of Solid State Electrochemistry, edited by P.J. Gellings, H.J.M. Bouwmeester, CRC Press, Boca Raton (1996), p.407.

DOI: 10.1016/s0022-0728(99)00081-9

Google Scholar

[5] J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin and J.C. Diniz da Costa: Journal of Membrane Science Vol. 320 (2008), p.13.

DOI: 10.1016/j.memsci.2008.03.074

Google Scholar

[6] M. Martin: J. Chem. Thermodynamics Vol. 35 (2003), p.1291.

Google Scholar

[7] D.N. Mueller, R.A. De Souza, T.E. Weirich, D. Roehrens, J. Mayer and M. Martin: Phys. Chem. Chem. Phys. Vol. 12 (2010), p.10320.

Google Scholar

[8] S.R. de Groot, P. Mazur: Non-Equilibrium Thermodynamics (North-Holland, Amsterdam 1962).

Google Scholar

[9] H. Schmalzried, W. Laqua and P.L. Lin: Z. Naturforsch. Vol. 34a (1979), p.192.

Google Scholar

[10] O. Teller, M. Martin: Solid State Ionics Vol. 101-103 (1997), p.475.

Google Scholar

[11] O. Teller, M. Martin: Ber. Bunsenges. Phys. Chem. Vol. 101 (1997), p.1377.

Google Scholar

[12] O. Teller, M. Martin: Electrochemistry Vol. 68, (2000), p.294.

Google Scholar

[13] H. Schmalzried, W. Laqua: Oxid. Metals Vol. 15 (1981), p.339.

Google Scholar

[14] U. Brinkmann, W. Laqua: Phys. Chem. Minerals Vol. 12 (1985), p.283.

Google Scholar

[15] C. Wagner: Z. Phys. Chem. B Vol. 21 (1933), p.25.

Google Scholar

[16] P. Kofstad: High temperature corrosion (Elsevier, London, 1988).

Google Scholar

[17] G.J. Yurek, J.P. Hirth and R.A. Rapp: Oxidation of Metals Vol. 8 (1974), p.265.

Google Scholar

[18] H.S. Hsu: Oxidation of Metals Vol. 26 (1986), p.315.

Google Scholar

[19] U. Koops, M. Martin: Z. Anorg. Allg. Chem. Vol. 629 (2003), p.1688.

Google Scholar

[20] M. Martin, U. Koops and N. Lakshmi: Solid State Ionics Vol. 172 (2004), p.357.

Google Scholar

[21] M. Martin, N. Lakshmi, U. Koops and H. -I. Yoo: Z. Phys. Chem. Vol. 221 (2007), p.1499.

Google Scholar

[22] H.S. Hsu, G.J. Yurek: Oxidation of Metals Vol. 17 (1982), p.55.

Google Scholar

[23] J. Paidassi, M. Vallée and P. Pépin: Mem. Sci. Rev. Metall Vol. 62 (1965), p.857.

Google Scholar