Research on the Influence Factors for the Deflection of Micro-Ball-End Cutter in Micro-End-Milling Process

Abstract:

Article Preview

Machining parameters and spindle radial runout have great influence on the micro-ball-end cutter deflection in the micro-end-milling process. In this study, a 3D (three-dimensional) thermal-mechanical FEM (finite element method) model of micro-milling with non-rigid cutter is built to study how radial runout, cutting depth, feed and spindle speed influence the cutter deflection when feed has the same direction with the spindle radial runout. Cutter deflection under different groove lengths, cutting depths, feeds and spindle speeds is investigated, which shows that cutter deflection increases with spindle radial runout significantly. The largest deflections with runout of 2μm are 3.26μm, 3.26μm, 4.71μm and 4.52μm respectively under the adopted machining conditions, while the largest deflections without runout are 1.85μm, 1.85μm, 2.26μm and 3.79μm respectively. It is also shown that the runout effect increases with groove length, cutting depth, while it decreases with feed.

Info:

Periodical:

Materials Science Forum (Volumes 697-698)

Edited by:

Tian Huang, Dawei Zhang, Bin Lin, Anping Xu, Yanling Tian and Weiguo Gao

Pages:

84-87

DOI:

10.4028/www.scientific.net/MSF.697-698.84

Citation:

M. J. Chen et al., "Research on the Influence Factors for the Deflection of Micro-Ball-End Cutter in Micro-End-Milling Process", Materials Science Forum, Vols. 697-698, pp. 84-87, 2012

Online since:

September 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.