Template Synthesis, Spectral and Redox Behavior of Metal Complexes of Macrocyclic Tetraaza Schiff Base and their Interaction with Herring Sperm DNA

Article Preview

Abstract:

This paper documents the detailed investigation of the relationship between molecular structure and biological activity of few tetraaza macrocyclic metal (II) complexes equipped by the template condensation of o-bromoaniline, ethylenediamine and salbenz in 2:1:1 ratio with metal (II) salts (1mM). All these complexes are found to be stable in air and soluble in CN3CN or DMSO, and are characterized through spectral (UV-Vis, IR, EPR) and electrochemical methods. A square planar geometry is proposed for Cu(II), Ni(II) and Co(II) complexes, while an octahedral geometry is suggested for Mn(II) and Fe(II). The IR spectra indicate that the NH groups of the amine exist as such even after complexation without deprotonation, and all the complexes show a strong band in 1580-1590 cm-1 region corresponding to ν(C=N), due to coordinated azomethine group to the metal. The solution electronic spectra of these complexes show intense LMCT bands around 400 nm. Intense electronic absorption spectra as well as the four line pattern in EPR spectra with broad g suggests that the copper(II) complexes have distorted square planar geometry. On titration with herring sperm DNA, CuN4, CoN4, NiN4 and MnN4 complexes exhibit an abrupt amend in their electronic spectrum and cyclic voltammogram. The intense intraligand π-π* transition in the region 350–420 nm is found to show hypochromicity on titration with DNA in all these complexes, due to their electrostatic interaction with DNA. All these complexes show one well–defined quasi-reversible redox couple with values ranging from ∆Ep 137 to 337 mV. Their spectral and electrochemical outcome designate that the square planar complexes Cu(II), Co(II) and Ni(II) interact much better than the axially coordinated octahedral complexes Mn(II) and Fe(II). The decrease found in the negative absorption peak, characteristic peak due to helicity of DNA, in circular dichroism studies reflects the perversion in the helical nature of B-DNA upon the addition of complex. The binding of plasmid DNA by these complexes has also been investigated by agarose gel electrophoresis, remarkably Ni(II) complex was found to cleave the DNA double helix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-229

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Aneetha, Y.H. Lai, S.C. Lin, K. Paneerselvam. T.H. Lu, C.S. Chung, J. Chem. Soc. Dalton Trans., (1999) 2885.

Google Scholar

[2] M. Radhakrishna Reddy, K. Hussain Reddy, K. Mohana Raja, Polyhedron, 17 (1998) 1355.

DOI: 10.1016/s0277-5387(97)00296-9

Google Scholar

[3] M.N. Hughes, Inorganic Chemistry of Biological Processes, 2nd Eds., Wiley, New York, (1981).

Google Scholar

[4] L. Casella, M. Gullotti, L.D. Giroa, E. Monzani, F. Chillemi, J. Chem. Soc. Dalton Trans., (1991) 2945.

Google Scholar

[5] B. Ward, A. Skorobogaty, J.C. Dabrowiak, Biochemistry, (1986) 6875.

Google Scholar

[6] W.D. Woggon, Acc. Chem. Res., 38 (2005) 127.

Google Scholar

[7] B.J. Hathway, D.E. Billing, Coord. Chem. Rev., 5 (1970) 143.

Google Scholar

[8] M. Shakir, S.P. Varkey, F. Firdaus, P.S. Hameed, Polyhedron, 13 (1994) 319.

Google Scholar

[9] P. Barbaro, C. Bianchini, G. Capannesi, L.D. Luca, F. Lashi, J. Chem. Soc. Dalton Trans., (2000) 2393.

Google Scholar

[10] T.A. Khan, S. Sirajul Hasan, P. Varkey, M.A. Rather, N. Jahn, M. Shakir, Trans. Met. Chem., 22 (1997) 4.

Google Scholar

[11] M. Shakir, S.P. Varkey, Polyhedron, 14 (1995) 1117.

Google Scholar

[12] Xing Yue Wei, Sheng Ying Qin, Chin. Chem. Lett., 17 (2006) 1259.

Google Scholar

[13] B.M. Haffman, D.H. Petering, Proc. Natl. Acad. Sci., 67 (1970) 637.

Google Scholar

[14] D.H. Busch, N.W. Alcock, Chem. Rev., 94 (1994) 585.

Google Scholar

[15] T. Tsumaki, Bull. Chem. Soc. Jap., 13 (1938) 252.

Google Scholar

[16] R.J. Wilkins, Advan. Chem., Ser. No. 100 (1971) 111.

Google Scholar

[17] K. Kissinger, K. Krowicki, J.C. Dabrowiak, J.W. Lown, Biochemistry, 26 (1987) 5590.

Google Scholar

[18] R.J. Fieli, J. Biomol. Struct. Dyn., 6 (1989) 1259.

Google Scholar

[19] G.J. Muller, S.J. Paikoff, S.E. Rokita, C.J. Burrows, J. Inorg. Biochem., 54 (1994) 199.

Google Scholar

[20] S. Routier, J.L. Bernier, P. Colson, C. Houssier, C. Rivalle, E. Bisagni, C. Bailly, Bioconjugate Chem., 8 (1997) 789.

DOI: 10.1021/bc970131y

Google Scholar

[21] S. Routier, N. Cotelle, J.P. Catteau, J.L. Bernier, M.J. Waring, J.F. Riou, C. Bailly, Bioorg. Med. Chem., 4 (1996) 1185.

Google Scholar

[22] S. Routier, J.L. Bernier, J.P. Catteau, C. Bailly, Bioorg. Med. Chem. Lett., 7 (1997) 1729.

Google Scholar

[23] J.K. Barton, Science, 233 (1986) 727.

Google Scholar

[24] S.J. Lippard, Acc. Chem. Res., 11 (1978) 211.

Google Scholar

[25] P. Uma Maheswari, S. Roy, H.D. Dulk, S. Barends, G.V.B. Wezel, B. Kozlevcar, P. Gamez, J. Reedijik, J. Am. Chem. Soc. Dalton Trans., 128(2006) 710.

Google Scholar

[26] J.K. Barton, J. Biomol. Struct. Dyn., 1 (1983) 621.

Google Scholar

[27] Z. Shu-Sheng, N. Shu-Yan, J. Gui-Fen, L. Xue-Mei, X. Hua,J. Kui, Chin. J. Chem., 24 (2006)51.

Google Scholar

[28] L.S. Lerman, J. Mol. Biol., 3 (1961) 18.

Google Scholar

[29] D.C. Olson, J. Vasilevskis, Inorg. Chem., 10 (1971) 463.

Google Scholar

[30] K. Jeyasubramanian, S. Thambidurai, S.K. Ramalingam, R. Murugesan, J. Inorg. Biochem., 72 (1998) 101.

Google Scholar

[31] W.H. Leung, E.Y.Y. Chan, E.K.F. Chow, I.D. Williams, S.M. Peng, J. Chem. Soc. Dalton Trans., (1996) 1229.

Google Scholar

[32] T.Y. Chi, C. Pariya, J.R. Hwu, C.S. Chung, Inorg. Chim. Acta., 285 (1992) 107.

Google Scholar

[33] J. Annaraj, S. Srinivasan, K.M. Ponvel, PR. Athappan J. Inorg. Biochem., 99 (2005) 669.

Google Scholar

[34] E.V. Ryback-Akimova, K. Marek, M. Masarwa, D.H. Busch, Inorg. Chim. Acta., 270 (1998) 151.

Google Scholar

[35] S. Srinivasan, G. Rajagopal, PR. Athappan, Trans. Met. Chem., 26 (2001) 588.

Google Scholar

[36] K. Nakamoto, Infraerd and Raman Spectra of Inorganic and Coordination Compounds, Wiley, Inter Science, New York, (1978).

Google Scholar

[37] L.J. Bellamy, The Infrared Spectra of Complex Molecules 3rd Eds, Chapman & Hall, London, (1975).

Google Scholar

[38] K. Sakata, M. Hashimoto, T. Hamada, S. Matsuno, Polyhedron, 15 (1996) 967.

Google Scholar

[39] C. Natarajan, P. Tharmaraj, R. Murugesan, J. Coord. Chem., 26 (1992) 205.

Google Scholar

[40] A.C. Brathwaite, T.N. Waters, J. Inorg. Nucl. Chem., 35 (1973) 3223.

Google Scholar

[41] P.J. Lukes, A.C. McGregor, T. Clifford, J.A. Crayston, Inorg. Chem., 31(1992) 4697.

Google Scholar

[42] M. Shakir, O.S.M. Nasam, A.K. Mohamed, S.P. Varkey, Polyhedron, 15 (1996) 1283.

Google Scholar

[43] L.S. Chen, S.C. Cummings, Inorg. Chem., 17 (1978) 2358.

Google Scholar

[44] F.M. Ashmawy, R.M. Issa, S.A. Amer, C.A. McAuliffe, R.V. Parish, J. Chem. Soc. Dalton Trans., (1986) 421.

Google Scholar

[45] S. Ransohoff, M.T. Adams, S.J. Dzugan, D.H. Busch, Inorg. Chem., 29 (1990) 2945.

Google Scholar

[46] V. Ravindar, P. Lingaiah, Ind. J. Chem., 244 (1985) 485.

Google Scholar

[47] M.S. Surendra Babu, K. Hussian Reddy, P.G. Krishna, Polyhedron, 26 (2007) 572.

Google Scholar

[48] U. Sakaguchi, A.W. Addison, J. Chem. Soc. Dalton Trans., (1979) 600.

Google Scholar

[49] C.J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, New York, (1962).

Google Scholar

[50] A. Barik, B. Mishra, A. Kunwar, R.M. Kadam, L. Shen, S. Dutta, S. Padhye, A.K. Satpati, H-Y. Zhang, K. Indira Priyadarsini, Europ. J. Med. Chem., 42(2007) 431.

DOI: 10.1016/j.ejmech.2006.11.012

Google Scholar

[51] D. Keivelson, R. Neiman, J. Chem. Phys., 35 (1961) 149.

Google Scholar

[52] H. Yokoi, A.W. Addison, Inorg. Chem., 16 (1977) 1341.

Google Scholar

[53] A. Pasini, E. Bernini, M. Scaglia, G. Desantis, Polyhedron, 15 (1996) 4461.

Google Scholar

[54] A.W. Addision, T. Nageswara Rao, E. Sinn, Inorg. Chem., 23 (1984) (1957).

Google Scholar

[55] A. Bottcher, T. Takeuchi, K.I. Hard-Castle, T.J. Meade, H.B. Gray, D. Cwikel, M. Kapon, Z. Dori, Inorg. Chem., 36 (1997) 2498.

DOI: 10.1021/ic961146v

Google Scholar

[56] B. Decastro, C. Freire, Inorg. Chem., 29 (1990) 5113.

Google Scholar

[57] A.J. Blake, R.O. Gould, M.A. Halcrow, M. Schroder, J. Chem. Soc. Dalton Trans., (1993) 2909.

Google Scholar

[58] E. Pereira, L. Gomes, B. Decastro, Inorg. Chim. Acta, 271 (1998) 83.

Google Scholar

[59] E. Erkizia, R.R. Conry, Inorg. Chem., 39 (2000) 1674.

Google Scholar

[60] X. Li, V.L. Pecoraro, Inorg. Chem., 28 (1989) 3403.

Google Scholar

[61] V.A. Bloomfield, D.M. Crothers, I. Tinoco, Physical Chemistry of Nucleic Acids, Harper and Row, New York, (1974) p.432.

Google Scholar

[62] E. Kikuta, N. Katsube, E. Kimura, J. Biol. Inorg. Chem., 4 (1999) 431.

Google Scholar

[63] J.M. Kelly, A.B. Tossi, D.J. McConnell, C. Ohuigin, Nucl. Acids Res., 13 (1985) 6017.

Google Scholar

[64] S.A. Tysoe, R.J. Morgan, A.D. Baker, T.C. Streaks, J. Phys. Chem., 97 (1993) 1707.

Google Scholar

[65] Q-L. Zhang, J-G. Liu, G-Q. Xue, H. Li, J-Z. Liu, H- Zhou, L-H. Qu, L-N. Ji, J. Inorg. Biochem., 85 (2001) 291.

Google Scholar

[66] M. Asadi, E. Safaei, B. Ranjbar, New. J. Chem., 28 (2004) 1227.

Google Scholar

[67] S. Mahadevan, M. Palaniandavar, Inorg. Chem., 37 (1998) 693.

Google Scholar

[68] T. Hirohama, Y. Kuranuki, E. Ebina, T. Sugizaki, H. Arii, M. Chikira, P. Tamil Selvi, M. Palaniandavar, J. Inorg. Biochem., 99 (2005) 1205.

DOI: 10.1016/j.jinorgbio.2005.02.020

Google Scholar

[69] S. Ramakrishnan, M. Palaniandavar, J. Chem. Sci., 117 (2005) 179.

Google Scholar

[70] S. Srinivasan, J. Annaraj, PR. Athappan, J. Inorg. Biochem., 99 (2005) 876.

Google Scholar

[71] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley, New York, (1980) 94.

Google Scholar

[72] J.K. Barton, Commun. Inorg, J. Chem., 3 (1985) 321.

Google Scholar

[73] C.V. Kumar, J.K. Barton, N.J. Turro, J. Am. Chem. Soc., 107 (1985) 5518.

Google Scholar

[74] V.I. Ivanov, L.E. Minchenkova, A.K. Schyolkina, A.I. Polytayev, Biopolymers, (1973) 1289.

Google Scholar

[75] J.G. Collins, T.P. Shields, J.K. Barton, J. Am. Chem. Soc., 116 (1994) 9840.

Google Scholar

[76] P. Uma Maheswari, M. Palaniandavar, J. Inorg. Biochem., 98 (2004) 219.

Google Scholar

[77] P. Tamil Selvi, M. Palaniandavar, Inorg. Chim. Acta, 337 (2002) 420.

Google Scholar

[78] J.G. Muller, S.J. Paikoff, S.E. Rokita, C.J. Burrows, J. Inorg. Biochem., 54 (1994) 199.

Google Scholar

[79] S.S. Mandal, N. Vinay Kumar, U. Varshney, S. Bhattacharya, J Inorg. Biochem., 63 (1996) 265.

Google Scholar

[80] P.A.N. Reddy, B.K. Santra, M. Nethaji, A.R. Chakravarty, J. Inorg. Biochem., 98 (2004) 377.

Google Scholar