Characterization of the Structural and Electrical Properties of Ion Beam Sputtered ZnO Films

Article Preview

Abstract:

We report the structural and electrical properties of ion beam sputtered ZnO films vacuum annealed at varying temperatures. XRD results revealed that the films grow along the c-axis. The crystallite sizes increase from ~8 to ~30 nm upon annealing at 800 ºC. Annealing aided to recover the compressive strain and regain the standard lattice parameter values. The RMS surface roughness increased to ~5.0 nm after annealing at 800 ºC as observed in AFM micrographs. Increased resistivity on the annealed films suggested that the oxygen vacancies are compensated by de-trapped oxygen at grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-52

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98 (2005) 041301.

Google Scholar

[2] T. Pauporte, D. Lincot, B. Viana, F. Pelle, Appl. Phys. Lett. 89 (2006) 233112.

Google Scholar

[3] J.J. Chen, F. Zeng, D.M. Li, J.B. Niu, F. Pan, Thin Solid Films 485 (2005) 257–261.

Google Scholar

[4] F. Fang, J. Futter, A. Markwitz, J. Kennedy, Nanotechnology 20 (2009) 245502.

Google Scholar

[5] T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporte, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Wohrle, K. Funabiki, M. Matsui, H. Miura, H. Yanagi, Adv. Funct. Mater. 19 (2009) 17–43.

DOI: 10.1002/adfm.200700188

Google Scholar

[6] S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, C. Evans, A.J. Nelson, A.V. Hamza, Phys. Rev. B 67 (2003) 094115.

Google Scholar

[7] Z.B. Shao, C.Y. Wang, S.D. Geng, X.D. Sun, S.J. Geng, J. Mater. Process. Technol. 178 (2006) 247.

Google Scholar

[8] J.G. Lu, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, S. Fujita, J. Cryst. Growth 299 (2007) 1.

Google Scholar

[9] R. Perez-Casero, A. Gutierrez-Llorente, O. Pons-y-Moll, W. Seiler, R.M. Defourneau, D. Defourneau, E. Millon, J. Perriere, P. Goldner, B. Viana, J. Appl. Phys. 97 (2005) 054905.

DOI: 10.1063/1.1858058

Google Scholar

[10] D.C. Oh, T. Suzuki, J.J. Kim, H. Makino, T. Hanada, M.W. Cho, T. Yao, Appl. Phys. Lett. 86 (2005) 032909.

Google Scholar

[11] E.M. Bachari, G. Baud, S. Ben Amor, M. Jacquet, Thin Solid Films 348 (1999) 165-172.

DOI: 10.1016/s0040-6090(99)00060-7

Google Scholar

[12] D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82 (1999)2552–2555

DOI: 10.1103/physrevlett.82.2552

Google Scholar

[13] J. Kennedy, J. Pithie, A. Markwitz, Proc. of SPIE Vol. 6800 (2008) 68001P-1-8.

Google Scholar

[14] J. Kennedy, A. Markwitz, H.J. Trodahl, B.J. Ruck, S.M. Durbin, W. Gao, J. Electronic Materials 36(4) (2007) 472-482.

Google Scholar

[15] JCPDS, Joint Committee for Powder Diffraction Standards, Powder Diffraction File for Inorganic Materials, 79-2205 (1979).

Google Scholar

[16] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. lto, J. Crys. Growth 130 (1993) 269-279.

Google Scholar

[17] B.D. Cullity, Elements of X-Ray Diffractions, Addison-Wesley, Reading, MA, 1978.

Google Scholar

[18] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79 (10) 7983.

Google Scholar

[19] Y.J. Kim, H.J. Kim, Materials Letters 41 (1999) 159–163.

Google Scholar