[1]
T. G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mat. Sci. Eng A, 462 (2007) 3–11.
DOI: 10.1016/j.msea.2006.02.473
Google Scholar
[2]
Z. Horita, T. Fujinami, M. Nemoto, T. G. Langdon, Improvement of mechanical properties for Al alloys using equal-channel angular pressing, J. of Mat. Proc. Tech., 117, (2001) 288-292.
DOI: 10.1016/s0924-0136(01)00783-x
Google Scholar
[3]
S. Ferrasse, V. M. Segal, F. Alford, J. Kardokus, S.Strothers, Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries, Mat. Sci. Eng A, 493 (2008) 130–140.
DOI: 10.1016/j.msea.2007.04.133
Google Scholar
[4]
S. Suwas, R. Arruffat Massion, L.S. Tóth, J.J. Fundenburger A. Eberhardt, W. Skrotzki, Evolution of texture in copper during equal channel angular extrusion–The role of initial microstructure and texture, Metall. Mater. Trans. A, 37A, (2006) 739-753.
DOI: 10.1007/s11661-006-0046-6
Google Scholar
[5]
R. Arruffat-Massion, S. Suwas, L.S. Tóth, W. Skrotzki, J.-J. Fundenberger, A. Eberhardt, Experiments and modelling of ECAE Textures of f.c.c. polycrystals, Mater. Sci. Forum, 495-497, (2005) 839-844.
DOI: 10.4028/www.scientific.net/msf.495-497.839
Google Scholar
[6]
S. Suwas, A. Eberhardt, L.S. Tóth, J.J. Fundenberger, T. Grosdidier, A recrystallisation based investigation for examining the efficiency of processing routes of Equal Channel Angular Extrusion, Mater. Sci. Forum, 467-470, (2005) 1325-1330.
DOI: 10.4028/www.scientific.net/msf.467-470.1325
Google Scholar
[7]
T. Grosdidier, J. J. Fundenberger, D. Goran, E. Bouzy, S. Suwas, W. Skrotzki, L.S. Tóth, On microstructure and texture heterogeneities in single crystals deformed by equal channel angular extrusion, Scripta Mater., 59 (2008) 1087–1090.
DOI: 10.1016/j.scriptamat.2008.07.032
Google Scholar
[8]
S. Li, I. J. Beyerlein, C. T. Necker, D. J. Alexander, M. Bourke, Heterogeneity of deformation texture in equal channel angular extrusion of copper, Acta Mater., 52 (2004) 4859–4875.
DOI: 10.1016/j.actamat.2004.06.042
Google Scholar
[9]
W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Texture gradient in ECAP copper measured by synchrotron radiation, Solid State Phenomena, 105, (2005) 327-332.
DOI: 10.4028/www.scientific.net/ssp.105.327
Google Scholar
[10]
W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Texture gradient in ECAP silver measured by synchrotron radiation, Mater. Sci. Forum, 495-497 (2005) 821-826.
DOI: 10.4028/www.scientific.net/msf.495-497.821
Google Scholar
[11]
W. Skrotzki, N. Scheerbaum, C. G. Oertel, R. A. Massion, S. Suwas, L. S. Toth, Microstructure and texture gradient in copper deformed by equal channel angular pressing, Acta Mater., 55 (2007) 2013–2024.
DOI: 10.1016/j.actamat.2006.11.005
Google Scholar
[12]
W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Texture Formation during ECAP of Aluminum Alloy AA 5109, Mater. Sci. Forum, 503-504 (2006) 99-106.
DOI: 10.4028/www.scientific.net/msf.503-504.99
Google Scholar
[13]
S. Suwas, R. Arruffat-Massion, L.S. Tóth, J.-J. Fundenberger, B. Beausir, Evolution of Texture during Equal Channel Angular Extrusion of Commercially Pure Aluminium: Experiments and Simulations, Mater. Sci. Eng. A, 520, (2009) 134-146.
DOI: 10.1016/j.msea.2009.05.028
Google Scholar
[14]
S. Suwas, L.S. Tóth, J.-J. Fundenberger, A. Eberhardt, Texture evolution in commercially pure Al during equal channel angular extrusion as a function of processing routes, Solid State Phenomena, 105, (2005) 357-362.
DOI: 10.4028/www.scientific.net/ssp.105.357
Google Scholar
[15]
W. Skrotzki, N. Scheerbaum, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Oblique cube texture formation in high purity aluminum during ECAP, Solid State Phenomena, 105, (2005) 351-356.
DOI: 10.4028/www.scientific.net/ssp.105.351
Google Scholar
[16]
W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Recrystallization of high purity aluminium during equal channel angular pressing, Acta Mater., 55, (2007) 2211-2218.
DOI: 10.1016/j.actamat.2006.08.018
Google Scholar
[17]
N. Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R.Z. Valiev, T. G. Langdon, Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature, Mat. Sci. and Eng A, 516 (2009) 248–252.
DOI: 10.1016/j.msea.2009.03.049
Google Scholar
[18]
P. Venkatachalam, S. Ramesh Kumar, B. Ravisankar,V. Thomas Paul, M. Vijayalakshmi, Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Trans. Nonferrous Met. Soc. China, 20 (2010) 1822-1828.
DOI: 10.1016/s1003-6326(09)60380-0
Google Scholar
[19]
Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials, Scripta Mater., 35 (1996) 143-146.
DOI: 10.1016/1359-6462(96)00107-8
Google Scholar
[20]
K. Pawlik, Determination of the Orientation Distribution Function from Pole Figures in Arbitrarily Defined Cells, Phys. Stat. Sol., 134 B (1986) 477-483.
DOI: 10.1002/pssb.2221340205
Google Scholar