The Role of Processing Routes on the Evolution of Microstructure and Texture Heterogeneity during ECAP of Al-Cu Alloy

Article Preview

Abstract:

The effect of processing routes during Equal Channel Angular Pressing (ECAP) of the Al alloy 2014 with regard to the evolution of microstructure and texture heterogeneity has been studied. The solution treated alloy (768 K for 1 hr) was subjected to ECAP through routes A, BA, BC and C using a die with inter-channel angle 90° upto 5 passes. Texture evolution was studied in the top, middle and bottom of the billets processed through routes A, BA, BC and C. Processing by route A resulted in a stronger texture evolution because of monotonic increase in strain with the number of passes. In route A, texture heterogeneity is more than the routes BC and BA. In routes BC and BA, the texture evolution in outer region near to surface of the billet changes their orientation as the passes increases possibly creating a stronger texture evolution at the top and bottom different from the centre of billet. The heterogeneity in texture evolution is the least less in route C, due to the reversal of shear.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

113-118

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mat. Sci. Eng A, 462 (2007) 3–11.

DOI: 10.1016/j.msea.2006.02.473

Google Scholar

[2] Z. Horita, T. Fujinami, M. Nemoto, T. G. Langdon, Improvement of mechanical properties for Al alloys using equal-channel angular pressing, J. of Mat. Proc. Tech., 117, (2001) 288-292.

DOI: 10.1016/s0924-0136(01)00783-x

Google Scholar

[3] S. Ferrasse, V. M. Segal, F. Alford, J. Kardokus, S.Strothers, Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries, Mat. Sci. Eng A, 493 (2008) 130–140.

DOI: 10.1016/j.msea.2007.04.133

Google Scholar

[4] S. Suwas, R. Arruffat Massion, L.S. Tóth, J.J. Fundenburger A. Eberhardt, W. Skrotzki, Evolution of texture in copper during equal channel angular extrusion–The role of initial microstructure and texture, Metall. Mater. Trans. A, 37A, (2006) 739-753.

DOI: 10.1007/s11661-006-0046-6

Google Scholar

[5] R. Arruffat-Massion, S. Suwas, L.S. Tóth, W. Skrotzki, J.-J. Fundenberger, A. Eberhardt, Experiments and modelling of ECAE Textures of f.c.c. polycrystals, Mater. Sci. Forum, 495-497, (2005) 839-844.

DOI: 10.4028/www.scientific.net/msf.495-497.839

Google Scholar

[6] S. Suwas, A. Eberhardt, L.S. Tóth, J.J. Fundenberger, T. Grosdidier, A recrystallisation based investigation for examining the efficiency of processing routes of Equal Channel Angular Extrusion, Mater. Sci. Forum, 467-470, (2005) 1325-1330.

DOI: 10.4028/www.scientific.net/msf.467-470.1325

Google Scholar

[7] T. Grosdidier, J. J. Fundenberger, D. Goran, E. Bouzy, S. Suwas, W. Skrotzki, L.S. Tóth, On microstructure and texture heterogeneities in single crystals deformed by equal channel angular extrusion, Scripta Mater., 59 (2008) 1087–1090.

DOI: 10.1016/j.scriptamat.2008.07.032

Google Scholar

[8] S. Li, I. J. Beyerlein, C. T. Necker, D. J. Alexander, M. Bourke, Heterogeneity of deformation texture in equal channel angular extrusion of copper, Acta Mater., 52 (2004) 4859–4875.

DOI: 10.1016/j.actamat.2004.06.042

Google Scholar

[9] W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Texture gradient in ECAP copper measured by synchrotron radiation, Solid State Phenomena, 105, (2005) 327-332.

DOI: 10.4028/www.scientific.net/ssp.105.327

Google Scholar

[10] W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Texture gradient in ECAP silver measured by synchrotron radiation, Mater. Sci. Forum, 495-497 (2005) 821-826.

DOI: 10.4028/www.scientific.net/msf.495-497.821

Google Scholar

[11] W. Skrotzki, N. Scheerbaum, C. G. Oertel, R. A. Massion, S. Suwas, L. S. Toth, Microstructure and texture gradient in copper deformed by equal channel angular pressing, Acta Mater., 55 (2007) 2013–2024.

DOI: 10.1016/j.actamat.2006.11.005

Google Scholar

[12] W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Texture Formation during ECAP of Aluminum Alloy AA 5109, Mater. Sci. Forum, 503-504 (2006) 99-106.

DOI: 10.4028/www.scientific.net/msf.503-504.99

Google Scholar

[13] S. Suwas, R. Arruffat-Massion, L.S. Tóth, J.-J. Fundenberger, B. Beausir, Evolution of Texture during Equal Channel Angular Extrusion of Commercially Pure Aluminium: Experiments and Simulations, Mater. Sci. Eng. A, 520, (2009) 134-146.

DOI: 10.1016/j.msea.2009.05.028

Google Scholar

[14] S. Suwas, L.S. Tóth, J.-J. Fundenberger, A. Eberhardt, Texture evolution in commercially pure Al during equal channel angular extrusion as a function of processing routes, Solid State Phenomena, 105, (2005) 357-362.

DOI: 10.4028/www.scientific.net/ssp.105.357

Google Scholar

[15] W. Skrotzki, N. Scheerbaum, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Oblique cube texture formation in high purity aluminum during ECAP, Solid State Phenomena, 105, (2005) 351-356.

DOI: 10.4028/www.scientific.net/ssp.105.351

Google Scholar

[16] W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, L.S. Tóth, Recrystallization of high purity aluminium during equal channel angular pressing, Acta Mater., 55, (2007) 2211-2218.

DOI: 10.1016/j.actamat.2006.08.018

Google Scholar

[17] N. Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R.Z. Valiev, T. G. Langdon, Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature, Mat. Sci. and Eng A, 516 (2009) 248–252.

DOI: 10.1016/j.msea.2009.03.049

Google Scholar

[18] P. Venkatachalam, S. Ramesh Kumar, B. Ravisankar,V. Thomas Paul, M. Vijayalakshmi, Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Trans. Nonferrous Met. Soc. China, 20 (2010) 1822-1828.

DOI: 10.1016/s1003-6326(09)60380-0

Google Scholar

[19] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials, Scripta Mater., 35 (1996) 143-146.

DOI: 10.1016/1359-6462(96)00107-8

Google Scholar

[20] K. Pawlik, Determination of the Orientation Distribution Function from Pole Figures in Arbitrarily Defined Cells, Phys. Stat. Sol., 134 B (1986) 477-483.

DOI: 10.1002/pssb.2221340205

Google Scholar