Dislocation Densities, Slip-System Types and Burgers Vector Populationsinhexagonal and Cubiccrystalsfrom X-Ray Line Profile Analysis

Article Preview

Abstract:

X-ray diffraction line profile analysis can be carried out on the hkl planes corresponding to the same texture component or the same crystallographic orientation fiber. It is shown that in textured polycrystalline materials or in thin films or multilayers X-ray line profiles measured on planes corresponding either to the main or the minor texture components can provide the Burgers vector population and dislocations densities in the different texture components separately. The experimental technique is outlined for textured specimens and the multiple convolutional whole profile method, i.e. the CMWP line profile analysis procedure, is presented for its capacity to determine the substructure pertaining to different texture components in textured samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

479-484

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Ungár, A. Borbély, Appl. Phy. Lett., 69, 173 (1996).

Google Scholar

[2] T. Ungár, G. Tichy, Phys. Stat. Sol. (a), 171, 425 (1999).

Google Scholar

[3] G. Ribárik, T. Ungár, J. Gubicza, J. Appl. Cryst., 34, 669-676 (2001).

Google Scholar

[4] T. Ungár, J. Gubicza, A. Borbély, G. Ribárik, J. Appl. Cryst., 34, 298-310 (2001).

Google Scholar

[5] L. Balogh, G. Ribárik, T. Ungár, J. Appl. Phys., 100, 023512 (2006).

Google Scholar

[6] L. Balogh, G. Tichy, T. Ungár, J. Appl. Cryst., 42, 580-591 (2009).

Google Scholar

[7] T. Ungár, G. Ribárik, L. Balogh, A. A. Salem, S. L. Semiatin, G.B.M. Vaughan, Scripta Mater., 63 (2010) 69-72.

Google Scholar

[8] D. Louër, J. P. Auffrédic, J. I. Langford, D. Ciosmak and J. C. Niepce, J. Appl. Cryst., 16 (1983) 183-191.

DOI: 10.1107/s0021889883010237

Google Scholar

[9] P. Scardi, M. Leoni, Acta Cryst. (2001). A57, 604-613.

Google Scholar

[10] T. Ungár, J. Powder Diffraction, 23 (2008) 125-132.

Google Scholar

[11] L. Velterop, R. Delhez, Th. H. de Keijser, E. J. Mittemeijer, D. Reefman, J. Appl. Cryst., 33 (2000) 296-306.

DOI: 10.1107/s0021889800000133

Google Scholar

[12] D.W. Brown, M.A.M. Bourke, R.D. Field, W.L. Hults, D.F. Teter, D.J. Thoma, S.C. Vogel, Mater. Sci. Eng. A, 421 (2006) 15-21.

Google Scholar

[13] X.L. Wang, A.D. Stoica, Nucl. Instr. Meth., 600 (2009) 309-312.

Google Scholar

[14] K. Máthis, K. Nyilas, A. Axt, I.D. Cernatescu, T. Ungár, P. Lukáč, Acta Mater., 2004, vol. 52, 2889-2894.

DOI: 10.1016/j.actamat.2004.02.034

Google Scholar

[15] K. Nyilas, A. Misra, T. Ungár, Acta Mater. 54 (2006) 751-755.

Google Scholar

[16] G. Csiszár, T. Ungár, A. Misra, Mater. Sci. Eng. A, accepted for publication.

Google Scholar

[17] Wilkens, M. and Eckert, H., Z. Naturforschung, 19a (1964) 459-470.

Google Scholar

[18] Wilkens, M., Herz, K. and Mughrabi, H., Z. Metallkde. 71, (1980) 376-384.

Google Scholar

[19] Louër, D., Auffredic, J. P., Langford, J. I., Ciosmak, D. and Niepce, J. C., J. Appl. Cryst., 16 (1983) 183-191.

Google Scholar

[20] Kuhn, H.-A., Biermann, H., Ungár, T., Mughrabi, H., Acta metall. mater., 39 (1991) 2783.

Google Scholar

[21] Ungár, T., Mughrabi, H. and Wilkens, M., Acta metall., 30 (1982) 1861-1867.

Google Scholar

[22] Ungár, T., Mughrabi, H., Rönnpagel, D. and Wilkens, M., Acta Metall., 32 (1984) 333-342.

Google Scholar

[23] P. Scardi, M. Leoni, Acta Cryst., A58 (2002) 190-200.

Google Scholar

[24] M. Leoni, J. Martinez-Garcia, P. Scardi, J. Appl. Cryst., 40 (2007) 719-724.

Google Scholar

[25] A. Guinier and F. Sebilleau, C. R. Acad. Sci. Paris, 235 (1952) 888.

Google Scholar

[26] M. Wilkens, K. Eckert, Z. Naturf. 19a (1964) 459.

Google Scholar

[27] G. Ribárik, T. Ungár, Mater. Sci. Eng. A, 528 (2010) 112-121.

Google Scholar

[28] T. Ungár, I. Dragomir, Á. Révész, A. Borbély, J. Appl. Cryst. 32 (1999) 992-1002.

Google Scholar

[29] I.C. Dragomir, T. Ungár, J. Appl. Cryst., 35 (2002) 556-564.

Google Scholar

[30] A. Borbély, I.C. Dragomir, G. Ribárik, T. Ungár, J. Appl. Cryst., 36 (2003) 160-162.

Google Scholar

[31] Ch.D. Terwilliger, Y.M. Chiang, Acta Metall. Mater. 43, (1995) 319-328.

Google Scholar

[32] W.C. Hinds, Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles, Wiley, New York, 1982.

Google Scholar

[33] M.A. Krivoglaz, Theory of X-ray and Thermal Neutron Scattering by Real Crystals,Plenum Press, New York, 1996.

Google Scholar

[34] M. Wilkens, in: J.A. Simmons, R. de Wit, R. Bullough (Eds.), Fundamental Aspects of Dislocation Theory, vol. II., Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC, USA, 1970, p.1195.

DOI: 10.6028/nbs.sp.317v2

Google Scholar

[35] E. Estevez-Rams, A. Penton-Madrigal, R. Lora-Serrano, and J. Martinez-Garcia, J. Appl. Cryst., 2001, vol. 34, 730-736.

DOI: 10.1107/s0021889801014091

Google Scholar

[36] N.E. Paton, W.A. Backofen, Metallurgical Trans., 1970, vol. 1, 2839-2847.

Google Scholar

[37] Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang, Mat. Sci. Eng. A, 2005, vol. 398, 209-219.

Google Scholar

[38] B. Clausen, C.N. Tome, D.W. Brown, S.R. Agnew, Acta Materialia, 2008, vol. 56, 2456-2468.

Google Scholar

[39] L. Wu, S.R. Agnew, D.W. Brown , G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, P.K. Liaw, Acta Materialia, 2008, vol. 56, 3699-3707.

DOI: 10.1016/j.actamat.2008.04.006

Google Scholar

[40] W. Massa, S. Wocadlo, S. Lotz, K.Z. Dehnicke, Anorg. Allg. Chem., 1990, vol. 589, 79-88.

Google Scholar

[41] M. M. J. Treacy, J.M. Newsam, and M.W. Deem, Proc. Roy. Soc. London A., 1991, vol. 433, 499-520.

Google Scholar

[42] K. Máthis, J. Gubicza, N.H. Nam, J. Alloys Compounds, 394 (2005) 194-199.

Google Scholar

[43] A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, H. Kung, Acta Mat. 52 (2004) 2387-2394.

DOI: 10.1016/j.actamat.2004.01.029

Google Scholar

[44] Y.C. Wang, A. Misra, R.G. Hoagland, Scripta Mater. 54 (2006) 1593-1598.

Google Scholar

[45] K.Y. Zhang, J.D. Embury, K. Han, A. Misra, Philos. Mag. 88 (2008) 2559.

Google Scholar

[46] J. Wang, R.G. Hoagland, A. Misra, Acta Mat. 56 (2008) 5685.

Google Scholar

[47] A. Misra, L. Thilly, MRS Bull. 35 (2010) 965.

Google Scholar

[48] J. Wang, A. Misra, Current Opinions in Solid State and Materials Science 15 (2011) 20-28.

Google Scholar