[1]
T. Ungár, A. Borbély, Appl. Phy. Lett., 69, 173 (1996).
Google Scholar
[2]
T. Ungár, G. Tichy, Phys. Stat. Sol. (a), 171, 425 (1999).
Google Scholar
[3]
G. Ribárik, T. Ungár, J. Gubicza, J. Appl. Cryst., 34, 669-676 (2001).
Google Scholar
[4]
T. Ungár, J. Gubicza, A. Borbély, G. Ribárik, J. Appl. Cryst., 34, 298-310 (2001).
Google Scholar
[5]
L. Balogh, G. Ribárik, T. Ungár, J. Appl. Phys., 100, 023512 (2006).
Google Scholar
[6]
L. Balogh, G. Tichy, T. Ungár, J. Appl. Cryst., 42, 580-591 (2009).
Google Scholar
[7]
T. Ungár, G. Ribárik, L. Balogh, A. A. Salem, S. L. Semiatin, G.B.M. Vaughan, Scripta Mater., 63 (2010) 69-72.
Google Scholar
[8]
D. Louër, J. P. Auffrédic, J. I. Langford, D. Ciosmak and J. C. Niepce, J. Appl. Cryst., 16 (1983) 183-191.
DOI: 10.1107/s0021889883010237
Google Scholar
[9]
P. Scardi, M. Leoni, Acta Cryst. (2001). A57, 604-613.
Google Scholar
[10]
T. Ungár, J. Powder Diffraction, 23 (2008) 125-132.
Google Scholar
[11]
L. Velterop, R. Delhez, Th. H. de Keijser, E. J. Mittemeijer, D. Reefman, J. Appl. Cryst., 33 (2000) 296-306.
DOI: 10.1107/s0021889800000133
Google Scholar
[12]
D.W. Brown, M.A.M. Bourke, R.D. Field, W.L. Hults, D.F. Teter, D.J. Thoma, S.C. Vogel, Mater. Sci. Eng. A, 421 (2006) 15-21.
Google Scholar
[13]
X.L. Wang, A.D. Stoica, Nucl. Instr. Meth., 600 (2009) 309-312.
Google Scholar
[14]
K. Máthis, K. Nyilas, A. Axt, I.D. Cernatescu, T. Ungár, P. Lukáč, Acta Mater., 2004, vol. 52, 2889-2894.
DOI: 10.1016/j.actamat.2004.02.034
Google Scholar
[15]
K. Nyilas, A. Misra, T. Ungár, Acta Mater. 54 (2006) 751-755.
Google Scholar
[16]
G. Csiszár, T. Ungár, A. Misra, Mater. Sci. Eng. A, accepted for publication.
Google Scholar
[17]
Wilkens, M. and Eckert, H., Z. Naturforschung, 19a (1964) 459-470.
Google Scholar
[18]
Wilkens, M., Herz, K. and Mughrabi, H., Z. Metallkde. 71, (1980) 376-384.
Google Scholar
[19]
Louër, D., Auffredic, J. P., Langford, J. I., Ciosmak, D. and Niepce, J. C., J. Appl. Cryst., 16 (1983) 183-191.
Google Scholar
[20]
Kuhn, H.-A., Biermann, H., Ungár, T., Mughrabi, H., Acta metall. mater., 39 (1991) 2783.
Google Scholar
[21]
Ungár, T., Mughrabi, H. and Wilkens, M., Acta metall., 30 (1982) 1861-1867.
Google Scholar
[22]
Ungár, T., Mughrabi, H., Rönnpagel, D. and Wilkens, M., Acta Metall., 32 (1984) 333-342.
Google Scholar
[23]
P. Scardi, M. Leoni, Acta Cryst., A58 (2002) 190-200.
Google Scholar
[24]
M. Leoni, J. Martinez-Garcia, P. Scardi, J. Appl. Cryst., 40 (2007) 719-724.
Google Scholar
[25]
A. Guinier and F. Sebilleau, C. R. Acad. Sci. Paris, 235 (1952) 888.
Google Scholar
[26]
M. Wilkens, K. Eckert, Z. Naturf. 19a (1964) 459.
Google Scholar
[27]
G. Ribárik, T. Ungár, Mater. Sci. Eng. A, 528 (2010) 112-121.
Google Scholar
[28]
T. Ungár, I. Dragomir, Á. Révész, A. Borbély, J. Appl. Cryst. 32 (1999) 992-1002.
Google Scholar
[29]
I.C. Dragomir, T. Ungár, J. Appl. Cryst., 35 (2002) 556-564.
Google Scholar
[30]
A. Borbély, I.C. Dragomir, G. Ribárik, T. Ungár, J. Appl. Cryst., 36 (2003) 160-162.
Google Scholar
[31]
Ch.D. Terwilliger, Y.M. Chiang, Acta Metall. Mater. 43, (1995) 319-328.
Google Scholar
[32]
W.C. Hinds, Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles, Wiley, New York, 1982.
Google Scholar
[33]
M.A. Krivoglaz, Theory of X-ray and Thermal Neutron Scattering by Real Crystals,Plenum Press, New York, 1996.
Google Scholar
[34]
M. Wilkens, in: J.A. Simmons, R. de Wit, R. Bullough (Eds.), Fundamental Aspects of Dislocation Theory, vol. II., Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC, USA, 1970, p.1195.
DOI: 10.6028/nbs.sp.317v2
Google Scholar
[35]
E. Estevez-Rams, A. Penton-Madrigal, R. Lora-Serrano, and J. Martinez-Garcia, J. Appl. Cryst., 2001, vol. 34, 730-736.
DOI: 10.1107/s0021889801014091
Google Scholar
[36]
N.E. Paton, W.A. Backofen, Metallurgical Trans., 1970, vol. 1, 2839-2847.
Google Scholar
[37]
Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang, Mat. Sci. Eng. A, 2005, vol. 398, 209-219.
Google Scholar
[38]
B. Clausen, C.N. Tome, D.W. Brown, S.R. Agnew, Acta Materialia, 2008, vol. 56, 2456-2468.
Google Scholar
[39]
L. Wu, S.R. Agnew, D.W. Brown , G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, P.K. Liaw, Acta Materialia, 2008, vol. 56, 3699-3707.
DOI: 10.1016/j.actamat.2008.04.006
Google Scholar
[40]
W. Massa, S. Wocadlo, S. Lotz, K.Z. Dehnicke, Anorg. Allg. Chem., 1990, vol. 589, 79-88.
Google Scholar
[41]
M. M. J. Treacy, J.M. Newsam, and M.W. Deem, Proc. Roy. Soc. London A., 1991, vol. 433, 499-520.
Google Scholar
[42]
K. Máthis, J. Gubicza, N.H. Nam, J. Alloys Compounds, 394 (2005) 194-199.
Google Scholar
[43]
A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, H. Kung, Acta Mat. 52 (2004) 2387-2394.
DOI: 10.1016/j.actamat.2004.01.029
Google Scholar
[44]
Y.C. Wang, A. Misra, R.G. Hoagland, Scripta Mater. 54 (2006) 1593-1598.
Google Scholar
[45]
K.Y. Zhang, J.D. Embury, K. Han, A. Misra, Philos. Mag. 88 (2008) 2559.
Google Scholar
[46]
J. Wang, R.G. Hoagland, A. Misra, Acta Mat. 56 (2008) 5685.
Google Scholar
[47]
A. Misra, L. Thilly, MRS Bull. 35 (2010) 965.
Google Scholar
[48]
J. Wang, A. Misra, Current Opinions in Solid State and Materials Science 15 (2011) 20-28.
Google Scholar