The Application of 3D-EBSD for Investigating Texture Development in Metals and Alloys

Article Preview

Abstract:

A focused ion beam (FIB) coupled with high resolution electron backscatter diffraction (EBSD) has emerged as a useful tool for generating crystallographic information in reasonably large volumes of microstructure. In principle, data generation is reasonably straightforward whereby the FIB is used as a high precision serial sectioning device for generating consecutive milled surfaces suitable for mapping by EBSD. However, there are several challenges facing the technique including the need for accurate reconstruction of the EBSD slice data and the development of methods for representing the myriad microstructural features of interest including, for example, orientation gradients arising from plastic deformation through to the structure of grains and their interfaces in both single-phase and multi-phase materials. This paper provides an overview of the use of 3D-EBSD in the study of texture development in alloys during deformation and annealing and includes an update on current research on the crystallographic nature of microbands in some body centred and face centred cubic alloys and the nucleation and growth of grains in an extra low carbon steel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

469-474

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Möbus and B.J. Inkson: Materials Today, 10 (2007) p.18.

Google Scholar

[2] J.E. Spowart, H.M. Mullens, B.T. Puchala: JOM, TMS, Warrendale, October (2003) p.35.

Google Scholar

[3] S. Schmidt, S.F. Nielsen, L. Margulies, X. Huang, D. Juul Jensen: Science, 305 (2004) p.229.

Google Scholar

[4] H. Hutter, P. Wilhartitz, M. Grasserbauer: Fres. J. Anal. Chem., 346 (1993) p.66.

Google Scholar

[5] P.A. Midgley, M. Weyland: Ultramicroscopy, 96 (2003) p.413.

Google Scholar

[6] M.K. Miller: Atom probe tomography. Kluwer Academic/Plenum Publishers, New York, USA (2000).

Google Scholar

[7] P.V. Liddicoat, X.Z. Liao, Y.T. Zhu, Y.H. Zhao, E.J. Lavernia, M.Y. Murashkin, R. Z Valiev, S.P. Ringer, Nature Communications, 1 (2010) p.63.

DOI: 10.1038/ncomms1062

Google Scholar

[8] S. Ghosh, Y. Bhandari, M. Groeber: Computer-Aided Design, 40 (2008) p.293.

Google Scholar

[9] Z. Zaafarani, D. Raabe, R.N. Singh, F. Roters, S. Zaefferer: Acta Mater., 54 (2006) p.1863.

Google Scholar

[10] J. Konrad, S. Zaefferer, D. Raabe: Acta Mater., 54 (2006) p.1369.

Google Scholar

[11] M. Ferry, W. Xu, J.M. Cairney, F.J. Humphreys: Mater. Sci. Forum, 558-559 (2007) p.413.

Google Scholar

[12] D.J. Rowenhorst, A. Gupta, C.R. Feng, G. Spanos: Scripta Mater., 55 (2006) p.11.

Google Scholar

[13] A.C. Lewis, A.B. Geltmacher: Scripta Mater., 55 (2006) p.81.

Google Scholar

[14] W. Xu, M. Ferry, N. Mateescu, J.M. Cairney, F.J. Humphreys: Mater. Charact., 58 (2007) p.961.

Google Scholar

[15] W. Xu, M. Ferry, J.M. Cairney, F.J. Humphreys: Acta Mater., 55 (2007) p.5157.

Google Scholar

[16] M.Z. Quadir, N. Mateescu, L. Bassman, W. Xu, M. Ferry: Scripta Mater., 57 (2007) p.977.

DOI: 10.1016/j.scriptamat.2007.08.012

Google Scholar

[17] N. Afrin, M.Z. Quadir, L. Bassman, A. Albou, J.H. Driver, M. Ferry: Scripta Mater., 64 (2011) p.221.

DOI: 10.1016/j.scriptamat.2010.10.020

Google Scholar

[18] W. Xu, M.Z. Quadir, M. Ferry, F.J. Humphreys: Metall. Mater. Trans A, 40A (2009) p.1547.

Google Scholar

[19] L. Robin, K.J. Laws, G. Kurniawan, W. Xu, K. Privat, M. Ferry: Metall. Mater. Trans A, 41 (2010) p.1691.

Google Scholar

[20] J. MacSleyne, M.D. Uchic, J.P. Simmons, M. De Graef: Acta Mater., 57 (2009) p.6251.

Google Scholar

[21] W. Xu, M. Ferry, F.J. Humphreys: Scripta Mater., 60 (2009) p.862.

Google Scholar

[22] S.B. Lee, A.D. Rollett, G.S. Rohrer: Mater. Sci. Forum, 558-559 (2007) p.915.

Google Scholar

[23] M.A. Groeber, B.K. Haley, M.D. Uchic, D.M. Dimiduk, S. Ghosh: Mater. Charact., 57 (2006) p.259.

Google Scholar

[24] M. Groeber, S. Ghosh, M.D. Uchic, D.M. Dimiduk: JOM, 59 (9) (2007) p.32.

Google Scholar

[25] M. Groeber, S. Ghosh, M.D. Uchic, D.M. Dimiduk: Acta Mater., 56 (2008) p.1257.

Google Scholar

[26] F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier, UK (2004).

Google Scholar

[27] A. Godfrey, D. Juul Jensen, N. Hansen: Acta Mater., 46 (1998) p.823.

Google Scholar

[28] G. Winther, X. Huang, N. Hansen: Acta Mater., 48 (2000) p.2187.

Google Scholar

[29] G. Winther, X. Huang, A. Godfrey, N. Hansen: Acta Mater., 52 (2004) p.4437.

Google Scholar

[30] F.X. Lin, A. Godfrey, G. Winther: Scripta Mater., 61 (2009) p.237.

Google Scholar

[31] P.J. Hurley, F.J. Humphreys: Acta Mater., 51 (2003) p.1087.

Google Scholar

[32] P.J. Hurley, P.S. Bate, F.J. Humphreys: Acta Mater., 51 (2003) p.4737.

Google Scholar

[33] F.J. Humphreys, P.S. Bate: Acta Mater., 51 (2007) p.5630.

Google Scholar

[34] C. George: BS Thesis, Harvey Mudd College, USA.

Google Scholar

[35] K. King, B. Liu, M.Z. Quadir, M. Ferry, L. Bassman: TMS Annual Meeting 3, TMS 2009, San Francisco, USA, 3 (2009) p.669.

Google Scholar

[36] B. Bay, N. Hansen, D.A. Hughes, D. Kulmann-Wilsdorf: Acta. Metall. Mater. 40 (1992) p.205.

Google Scholar

[37] A. Albou, J.H. Driver, C. Maurice: Acta Mater., 58 (2010) p.3022.

Google Scholar