Observations of Dislocation Structure in AA 7050 by EBSD

Article Preview

Abstract:

During and after plastic deformation of metals, dislocations tend to evolve into generally well-defined structures that may include tangles, bands, cell walls, and various additional features. Observation of these structures by electron backscatter diffraction is only accomplished by analysis of changes in orientation from one position to the next. Excess (or geometrically necessary) dislocation densities can be inferred from 2D measurements or obtained directly from 3D measurements as indicated by Nye’s dislocation density tensor. Evolution of excess dislocation densities was measured for a split channel die specimen of aluminum alloy 7050 in the T7451 temper. Densities evolved by a factor or 1.6 for compressive deformations of 15%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

493-498

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C Flemings, G.E. Nereo, Trans. AIME, 242 (1968) 50-55.

Google Scholar

[2] A.J. Beaudoin, W.A. Cassada, Proc. TMS Spring Meeting, (1998).

Google Scholar

[3] R.H. Srone, J.A. Psioda, Met. Trans. A, 6A (1975) 668-670.

Google Scholar

[4] N.U. Deshpande, Metal. Trans. A, 29A (1998) 1191-1201.

Google Scholar

[5] J. Gjonnes, C.J. Simensen, Acta Metal. 18 (1970) 881.

Google Scholar

[6] D. Kuhlmann-Wilsdorf, N. Hansen, Scripta Metall. Mater. 25 (1991) 1557-1562.

Google Scholar

[7] J.F. Nye, Acta Metall, 1 (1953) 153-163.

Google Scholar

[8] W. Pantleon, Acta Mater. 46 (1998) 451-456.

Google Scholar

[9] W. Pantleon, Mater. Sci. Eng. A319-321 (2001) 211-215.

Google Scholar

[10] D.P Field, H. Weiland, Mat. Sci. Forum 157-162 (1994) 1181-1188.

Google Scholar

[11] P. Trivedi, D.P. Field, H. Weiland, Int. J. of Plasticity 20 (2004) 459-476.

Google Scholar

[12] G. Winther, X. Huang, N. Hansen, Acta Mater. 48 (2000) 2187-2198.

Google Scholar

[13] A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov, J. Mech. Phys. Sol, 52 (2004) 1213-1246.

Google Scholar

[14] E. Kroner, Appl. Mech. Rev. 15 (1962) 599.

Google Scholar

[15] B. Bay, N. Hansen, D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A113 (1989) 385-397.

Google Scholar

[16] D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A113 (1989) 1-41.

Google Scholar

[17] N. Hansen, Mater. Sci. Tech. 6 (1990) 1039-1040.

Google Scholar

[18] D.A. Hughes, N. Hansen, Mater. Sci. Tech. 7 (1991) 544-553.

Google Scholar

[19] B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Acta metal. mater. 40 (1992) 205-219.

Google Scholar

[20] D.A. Hughes, N. Hansen, Metall. Trans. 24A (1993) 2021.

Google Scholar

[21] S. Panchanadeeswaran, R.D. Doherty, R. Becker, Acta Mater. 44 (1996) 1233-1262.

Google Scholar

[22] O. Engler, M.-Y Huh, C.N. Tome, Metall. Mater. Trans. A, 31A (2000) 2299-2315.

Google Scholar

[23] CC Merriman, DP Field and P Trivedi, Mat Sci Eng A494 (2008) 28-35.

Google Scholar

[24] J.S. Kallend and Y.C. Huang, Proc. Seventh International Conference on Textures of Materials, Netherlands Soc. For Materials Science, 1984, pp.783-786.

Google Scholar

[25] D.D. Sam and B.L. Adams, Metall. Trans. 17A (1986) 513-517.

Google Scholar

[26] S.F. Castro, J. Gallego, F.J.G. Landgraf, and H.-J. Kestenbach, Mat. Sci. Eng. A, 427 (2006) 301–305.

Google Scholar

[27] N. Hansen, X. Huang, W. Pantleon and G. Winther, Phil. Mag. 86 (2006) 3981-3994.

Google Scholar

[28] H.J. Bunge, Matls. Sci. Forum 157-162 (1994) 13-30.

Google Scholar