Texture Evolution during Recrystallisation of Cold Rolled TWIP Steel

Article Preview

Abstract:

A TWinning Induced Plasticity (TWIP) steel was cold rolled to 42% thickness reduction followed by isochronal annealing for 300 s between 600-850 °C. Bulk texture evolution during recrystallisation was investigated by X-Ray Diffraction. While the development of the α-fibre after cold rolling is typical of low stacking fault energy materials, anomalously higher intensities were noted for the Goss ({110}) compared to Brass ({110}) orientations. Upon recrystallisation, the main rolling texture components were retained and ascribed to nucleation at orientations close to those of the deformed matrix followed by annealing twinning which leads to crystallographically identical variants. Unlike previous texture investigations on austenitic steels, the relatively homogeneous deformation microstructure and uniform distribution of subsequent nucleation sites led to the retention of the F ({111}) orientation. Moreover, the firsthand observation of the Rotated Copper ({112}) orientation in TWIP steel is attributed to the second order twinning of the A ({110}) orientation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

647-650

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391-1409.

Google Scholar

[2] J. Hirsch, K. Lücke, M. Hatherly, Acta Metall. 36 (1988) 2905-2927.

Google Scholar

[3] U. Schmidt, K. Lücke, Texture Cryst. Sol. 3 (1979) 85-112.

Google Scholar

[4] F.J. Humphreys, M. Hatherly, Recrystallisation and Related Annealing Phenomena, second ed., Elsevier, Oxford, (2004).

Google Scholar

[5] D.B. Santos, A.A. Saleh, A.A. Gazder, A. Carman, D.M. Duarte, É.A.S. Ribeiro, B.M. Gonzalez, E.V. Pereloma, Mat. Sci. Eng. A 528 (2011) 3545-3555.

Google Scholar

[6] A.A. Saleh, E.V. Pereloma, A.A. Gazder, Mat. Sci. Eng. A 528 (2011) 4537-4549.

Google Scholar

[7] L. Bracke, K. Verbeken, L. Kestens, J. Penning, Acta Mater. 57 (2009) 1512-1524.

Google Scholar

[8] T. Leffers, J. Bilde-Sørensen, Acta Metall. Mat. 38 (1990) 1917-(1926).

Google Scholar

[9] S. Vercammen, Ph.D. Thesis, KU Leuven, Belgium, (2004).

Google Scholar

[10] S.G. Chowdhury, S. Das, P.K. De, Acta Mater. 53 (2005) 3951-3959.

Google Scholar

[11] C. Donadille, R. Valle, P. Dervin, R. Penelle, Acta Metall. 37 (1989) 1547-1571.

Google Scholar

[12] H. Li, F. Yin, T. Sawaguchi, K. Ogawa, X. Zhao, K. Tsuzaki, Mat. Sci. Eng. A 494 (2008) 217-226.

Google Scholar

[13] S.G. Chowdhury, S. Das, B. RaviKumar, P.K. De, Metall. Mater. Trans. A 37A (2006) 2349-2359.

Google Scholar

[14] H. Eichelkraut, J. Hirsch, K. Lücke, Z. Metallkde 75 (1984) 113-123.

Google Scholar

[15] A.A. Gazder, A.A. Saleh, E.V. Pereloma, Scr. Mater. (2011) DOI: 10. 1016/j. scriptamat. 2011. 1006. 1026.

Google Scholar