Atomic-Scale Computer Simulation for early Precipitation Process of Ni75AlXV25-X Alloy with Middle Al Composition

Article Preview

Abstract:

The microscopic phase field approach was applied for modeling the early precipitation process of Ni75AlxV25-x alloy. Without any a prior assumption, this model can be used to simulate the temporal evolution of arbitrary morphologies and microstructures on atomic scale. Through the simulated atomic pictures, calculated order parameters and volume fraction of the θ (Ni3V) and γ′ (Ni3Al) ordered phases, Ni75AlxV25-x alloys with Al composition of 0.05, 0.053 and 0.055 (atom fraction) were studied. Results show: For these alloys, θ and γ′ precipitated at the same time. With the increase of Al content, the amount of γ′ phase is increasing and that of θ phase is decreasing; the precipitation characteristic of γ′ phase transforms from Non-Classical Nucleation and Growth (NCNG) to Congruent Ordering + Spinodal Decomposition (CO+SD) gradually, otherwise, the precipitation characteristic of θ phase transforms from Congruent Ordering + Spinodal Decomposition (CO+SD) to Non-Classical Nucleation and Growth (NCNG) mechanism gradually. Both θ and γ′ has undergone the transition process of mixture precipitation mechanism with the characteristic of both NCNG and CO+SD mechanism. No incontinuous transition of precipitation mechanism has been found.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

1328-1337

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J . W Cahn, J E Hilliard: J. Chem. Phys. Vol. 28-2 (1958), p.258.

Google Scholar

[2] J . W Cahn, J E Hilliard: J. Chem. Phys. Vol. 31-3(1959), p.688.

Google Scholar

[3] L.Q. C hen: Annu. Rev. Mater. Res. Vol. 32(2002), p.113.

Google Scholar

[4] R. Poduri, L. Q Chen: Acta mater. Vol. 46 (1998) , p.3915.

Google Scholar

[5] T. Miyazaki, T. Koyama and T. Kozakai: Materials Science and Engineering. Vol. A312(2001) , p.38.

Google Scholar

[6] S. Müller, L . Wang and A. Zunger: Modeling Simul. Mater. Sci. Eng. Vol. 10 (2002), p.131.

Google Scholar

[7] L. Q C hen, Y . Z . W ang : JOM. Vol. 12(1996), p.12.

Google Scholar

[8] R. Poduri, L. Q Chen: Acta mater. Vol. 45(1997), p.245.

Google Scholar

[9] R. Poduri, L. Q Chen: Acta mater. . Vol. 44(1996), p.4253.

Google Scholar

[10] T. Koyama, T. Miyazaki and M. Mebed: Metallurgical and Materials Transactions A. Vol. 26A(1995), p.2617.

Google Scholar

[11] D. Y Li, L. Q Chen: Acta mater. Vol . 37(1997), p.1271.

Google Scholar

[12] R. Poduri, L. Q Chen: Acta mater. Vol. 46(1998), p.1719.

Google Scholar

[13] C. Pareige, D. Blavette: Scripta mater. Vol. 44(2001), p.243.

Google Scholar

[14] H. Wendt, P. Hassen: Acta metal. Vol. 31(1993), p.1649.

Google Scholar

[15] D. Banerjee, R. Banerjee andY. Wang: Scripta Materialia. Vol. 41(1999), p.1023.

Google Scholar

[16] A .J. Ardell, A . Maheshwari: Acta metall mater. Vol. 43(1995), p.1825.

Google Scholar

[17] P. Staron, R. Kampmann: Acta mater. Vol. 48(2000), p.701.

Google Scholar

[18] P. Staron, R. Kampmann: Acta mater. Vol. 48(2000), p.713.

Google Scholar

[19] O. S usuma, K. Noriko, F. Toshiyuki and K. Masaharu: ntermetallics. Vol. 10(2002), p.343.

Google Scholar

[20] J.M. Liu: Materials Science and Engineering. Vol. A254, (1998), p.45.

Google Scholar

[21] P. R. Rios: Scripta Materialia. Vol. 41(1999), p.1283.

Google Scholar

[22] H. Zapolsky, C. P areige, L. Marteau and Blavette D: Calphad. Vol. 25(2001), p.125.

Google Scholar

[23] L. Q. Chen: Acta metall mater. Vol. 42(1994), p.3503.

Google Scholar

[24] L.Q. Chen A.G. Khachaturyan: Acta metall. mater. Vol. 39(1991), p.2533.

Google Scholar

[25] Y. H. Zhao, in: Atomic-Scale Computer Simulation for Alloy during early Precipitation Process. Northwestern Polytechnical University P.H. D Thesis, Xi'an (2003), p.115.

Google Scholar

[26] F.K. Legous, Y.W. Lee: Acta Metal. Mater. Vol. 32(1984), p.1837.

Google Scholar

[27] K. Binder, M. Krumbar: Phys. Rev. B. Vol. 9(1974), p.2328.

Google Scholar

[28] D.W. Heermann. In: Computer Simulation in Physical Metallurgy. Brussels and Luxembourg: Ecsc. (1986), p.245.

Google Scholar