[1]
Georgee, Andreev. Brittle failure of rock materials test results and constitutive models. A. A. Balkema / Rotterdam /Brookfield, 1995: 1-5.
Google Scholar
[2]
T. H. Yang, L.G. Tham, C. A. Tang, Influence of Heterogeneity of Mechanical Properties on Hydraulic Fracturing in Permeable Rocks, Rock Mechanics Rock Engineering, 2004, 37(4), 251-275.
DOI: 10.1007/s00603-003-0022-z
Google Scholar
[3]
Detournay E , Carbonell R. Fracture mechanics analysis of breakdown process in minifrac or leak-off tests . Proceeding of Eu2 rock'94 . Rotterdam : Balkema , 1994. 399 - 407.
Google Scholar
[4]
Zhao Z. , Kim H. and Haimson, B. Hydraulic fracturing initiation in granite, Rock Mechanics, Aubertin, Hassani and Mitri (eds), Balkema Publishers, Rotterdam, 1996: 1279-1284.
Google Scholar
[5]
Gorelic M , Chudnovsky A. Application of statistical fracture mechanics in hydraulic fracture [A] . Rock Mechanics . Rotterdam : Balkema , 1996. 1261 - 1268.
Google Scholar
[6]
Horii. H., Okui. Y. Thermo mechanics and micro mechanics-based continuum theory for localization phenomena. Proc. of IUMAM Symposium on Fracture of Brittle, Disordered Materials, Edited by Baker and Karihaloo, 1993: 391-405.
Google Scholar
[7]
Yale, D.P. Lyons, S.L. and Qin, G. Coupled geomechanics -fluid flow modeling in petroleum reservoirs: coupled versus uncoupled response. Pacific Rocks 2000, Girard, Liebman, Breeds & Doe (eds), Belkema, Rotterdam , 2000: 137-144.
Google Scholar
[8]
Jincai Zhang, Mao Bai, J.C. Roegiers, Jianxue Wang, Tianquan Liu, Experimental determination of stress -permeability relationship, Paciffic Rock 2000, Girard, Liebman, Breeds&Doe, Balkema, Rotterdam: 817-822.
Google Scholar
[9]
Zhan Meili, Cen Jian. Experimentaland analytical study on hydraulic fracturing of cylinder sample, chinese journal of rock mechanics and engineering, 2007,26(6),1173-1181.
Google Scholar
[10]
Bažant Z P, Oh B H. Crack band model for concrete. Materials and Structures (RILEM), 1983, 16: 155~177.
Google Scholar
[11]
R.G. Jeffrey, K.W. Mills. Hydraulic fracturing applied to inducing longwall coal mine goaf falls. Paciffic Rock 2000, Girard, Liebman, Breeds&Doe, Balkema, Rotterdam: 423-430.
Google Scholar
[12]
Keivan Noghabai. Discrete versus Smeared versus Element-Embedded Crack Models on Ring Problem. Journal of Engineering Mechanics, 2000, 4: 307-314.
DOI: 10.1061/(asce)0733-9399(1999)125:3(307)
Google Scholar
[13]
Sitharam Thallak, Leo Rothenbury & Maurice Dusseault. Simulation of multiple hydraulic fractures in a discrete element system. Rock mechanics as a multidisciplinary science Roegiers(ed. ), 1991, Balkema Rotterdam, Proceedings of the 32nd U.S. Symposium: 271-280.
Google Scholar
[14]
Bruni M S, . Dorfmann A, Lao K. Coupled particle and fluid flow modeling of fracture and slurry injection in weakly consolidated granular media, Rock Mechanics in the National Interest, Elsworth, Tinucci, Heasley (eds). 2001, Swets Zeitinger Lisse: 173-180.
Google Scholar
[15]
Yale, D.P. Lyons, S.L. and Qin, G. Coupled geomechanics-fluid flow modeling in petroleum reservoirs: coupled versus uncoupled response. Pacific Rocks 2000, Girard, Liebman, Breeds & Doe (eds), Belkema, Rotterdam, 2000: 137-144.
Google Scholar
[16]
Kim, K. and Yao, C.Y. 1994. The influence of constitutive behaviour on the fracture process zone and stress field evolution during hydraulic fracturing. Rock Mechanis, Nelson & Laubach (eds), Balkema, Rotterdam: 193-200.
Google Scholar
[17]
Bruno M.S. and Nakagawa F.M. Pore pressure influence on tensile fracture propagation in sedimentary rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1991, 28(4): 261-273.
DOI: 10.1016/0148-9062(91)90593-b
Google Scholar