Interfacial Friction of Ceramics at High Temperature Ring-Compression Test

Article Preview

Abstract:

Using ring compression tests, the interfacial friction and flow stress of 3Y-TZP/Al2O3 composite at elevated temperatures were investigated. Theoretical calibration curves of the friction factor and the relative average pressure curves for the ring compression tests of 6:3:2 standard rings were drawn based on a velocity field capable of describing the bulge phenomena. The lubricant was the boron nitride (hexagonal). The tests were adopted at temperature range of 1400°C-1600°C. Results indicate that the interfacial friction factor has the value in the range of 0.34-0.49, so that boron nitride lubricant can be used effectively in present temperatures. As two extremely important parameters, the temperature and strain rate have no significant effect on the fraction factor. It is proved reliable that the ring-compression test at 1400°C and even higher is used to evaluate the performance of boron nitride lubricant.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

967-972

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Schey: Metal Deformation Process, Friction and Lubrication. Marcel Dekker Inc., New York, Vol. 807 (1970).

Google Scholar

[2] M. Kunogi: J. Sci. Res. Inst (Tokyo), Vol. 50 (1956), p.214.

Google Scholar

[3] A.T. Male and M.G. Cockroft: J. Inst. Met., Vol. 93 (1964), p.38.

Google Scholar

[4] K.P. Rao and K. Sivaram: J. Mater. Process. Technol., Vol. 1-4 (1993), p.295.

Google Scholar

[5] F. Wakai, S. Sakaguchi and Y. Matsuno: Adv. Ceram. Mat., Vol. 259 (1986), p.1.

Google Scholar

[6] S. Hayashi, K. Watanabe, M. Imuta and J. Goto: Key. Eng. Mat., Vol. 159-160 (1999), p.181.

Google Scholar

[7] G.Q. CHEN and K.F. ZHANG: Mater. Sci. Forum., Vol. 2973 (2005), p.475.

Google Scholar

[8] A.J.A. Winnubst and M.M.R. Boutz: J. Eur. Ceram. Soc., Vol. 18 (1998), p.2101.

Google Scholar

[9] Y.J. Hwu, T. Chwan and F.Y. WANG: J. Mater. Process. Tehnol., Vol. 37 (1993), p.319.

Google Scholar

[10] N.A. Abdul and A.N. Bramley: Inst. Met. (London) Monogr, Rep. Ser., Vol. 1-2 (1973), p.386.

Google Scholar

[11] K. Pöhlandt: Modeling Hot Deformation of Steels (Springer , Heidelberg, 1989).

Google Scholar

[12] B. Avitzur: Metal forming: Processed and Analysis (Mcgraw-Hill, New York, 1968).

Google Scholar

[13] B. Avitzur and F. Sauerwine: J. Eng. Ind. Trans. ASME., Vol. 100 (1978), p.340.

Google Scholar

[14] H. Sofuoglu, H. Gedikli and J. Rasty: J Eng. Mater. Technol. Trans. ASME., Vol. 123 (2001), p.338.

Google Scholar

[15] H.K. Moon, J.S. Lee, S.J. Yoo, M.S. Joun and J.K. Lee: J Eng. Mater. Technol. Trans. ASME., Vol. 129 (2007), p.349.

Google Scholar

[16] A.T. Male and V. Depierre: J Lubric. Technol. Trans. ASME, Vol. 92 (1970), p.389.

Google Scholar

[17] F.Y. Wang and J.G. Lenard: J. Eng. Mater. Technol. Trans. ASME., Vol. 114 (1992), p.13.

Google Scholar

[18] L.X. Li, D.S. Peng, J.A. Liu and Z.Q. Liu: J. Mater. Process. Technol., Vol. 112 (2001), p.1.

Google Scholar

[19] R.L. Goetz, V.K. Jain, J.T. Morgan and M.W. Wierschke: Wear, Vol. 143 (1991), p.71.

Google Scholar

[20] Z.J. Shen and M. Nygren: Key. Eng. Mat., Vol. 264-368 (2004), p.857.

Google Scholar

[21] F. Wang, K.F. Zhang and W.B. Han: Mater. Sci. Forum., Vol. 551-552 (2007), p.501.

Google Scholar