Electrodeposited Nanocrystalline Ni-Fe with Banded Structure

Article Preview

Abstract:

The microstructure of a Ni–18 wt.% Fe electrodeposits having a banded structure is described in detail. The aim is to investigate the influence of the banded structure on grain growth behaviour and texture and to elucidate if there are other mechanisms operative in the stabilization of nanocrystalline electrodeposits. Spectroscopy techniques have been used to characterize the variations in alloy/impurity concentration perpendicular to the growth direction. The influence of these chemical variations on the microstructural evolution has been monitored by in-situ annealing treatments in the TEM. Local texture of the annealed material has been determined by use of the electron backscatter diffraction (EBSD) technique. SEM and TEM investigations have shown that the banded structure is not related to phase changes and that grain growth is not affected by the banded structure, i.e. there is no preferred growth along bands. The first grown grains have <100>, <112> and <111> orientations with the growth direction and upon further grain growth a <111> fibre texture with respect to the growth direction of the electrodeposits is formed. The banded structure seems not to affect the general behaviour of nanocrystalline electrodeposits.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1618-1623

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Erb and A.M. El-Sherik U.S. Patent 5352266 (1994).

Google Scholar

[2] J. Banhart: Prog. Mat. Sci. 46 (2001), p.559.

Google Scholar

[3] M. Suralvo, B. Bouwhuis, J.L. McCrea, G. Palumbo and G.D. Hibbard: Scr. Mater. 58 (2008), p.247.

DOI: 10.1016/j.scriptamat.2007.10.018

Google Scholar

[4] B. Bouwhuis and G.D. Hibbard: Metall. Mater. Trans. B, Vol. 37B (2006), p.919.

Google Scholar

[5] B. Bouwhuis, J.L. McCrea, G. Palumbo and G.D. Hibbard: Acta Mater. 57 (2009), p.4046.

Google Scholar

[6] C.C. Nee and R. Weil: Surf. Technol. 25 (1985), p.7.

Google Scholar

[7] S.W. Banovic, K. Barmak and A.R. Marder: J. Mater. Sci. 33 (1998), p.639.

Google Scholar

[8] K. Nakamura, M. Umetani and T. Hayashi: Surf. Techn. 25 (1985), p.111.

Google Scholar

[9] P. Egberts, P. Brodersen and G.D. Hibbard: Mat. Sci. Eng. A 441 (2006), p.336.

Google Scholar

[10] J. Amblard, I. Epelboin, M. Froment, and G. Maurin: J. Appl. Electrochem. 9 (1979), p.233.

Google Scholar

[11] U. Klement, L. Hollang, S.R. Dey, M. Battabyal, O.V. Mishin and W. Skrotzki: Sol. State Phenom. 160 (2010), p.235.

DOI: 10.4028/www.scientific.net/ssp.160.235

Google Scholar

[12] U. Klement, M. da Silva, and W. Skrotzki: J. Microscopy 230 (2008), p.455.

Google Scholar

[13] M. da Silva and U. Klement: Z. Metallkd. 96 (2005) p.1.

Google Scholar

[14] G. Hibbard, K.T. Aust, G. Palumbo, and U. Erb: Scr. Mater. 44 (2001), p.513.

Google Scholar

[15] M.L. Trudeau: Nanostruct. Mater. 12 (1999), p.55.

Google Scholar

[16] F. Ebrahimi, and H.Q. Li: Rev. Adv. Mater. Sci. 5 (2003), p.134.

Google Scholar

[17] C. Cheung, F. Djuanda, U. Erb and G. Palumbo: Nanostruct. Mater 5 (1995), p.513.

Google Scholar

[18] J.H. Seo, J.K. Kim, and Y.B. Park: Mater. Sci. Forum 558-559 (2007), p.1279.

Google Scholar

[19] F. Czerwinski, H. Li, M. Megret, J.A. Szpunar, G.D. Clark and U. Erb: Scipa Mater 37 (1997), p. (1967).

Google Scholar

[20] F. Czerwinski, J.A. Szpunar, and U. Erb: J. Mater. Sci. – Mater. Electron. 11 (2000), p.243.

Google Scholar

[21] J.K. Kim, J.H. Seo and Y.B. Park: Mater. Sci. Forum 467-470 (2004), p.1313.

Google Scholar

[22] J.L. McCrea, G. Palumbo, G.D. Hibbard and U. Erb: Rev. Adv. Mater. Sci. 5 (2003), p.252.

Google Scholar