Materials Science Forum Vols. 706-709

Paper Title Page

Abstract: Solidification processes of Fe-B and Fe-C eutectic alloys have been investigated by a time-resolved synchrotron x-ray diffraction under containerless cooling conditions using a conical nozzle levitation technique. To observe relative variations of structure from the undercooled liquid to crystalline phase, we have conducted millisecond order time-resolved x-ray diffraction experiments with a two-dimensional detector. The structural variations observed during the solidification of the Fe83C17 alloy were identified as the phase transformation process expected from the Fe-C phase diagram. As for the Fe83B17 alloy, it was revealed that a metastable phase composed of Fe23B6 compound was precipitated as a primary crystalline phase from the undercooled liquid. In addition, decomposition of the metastable Fe23B6 phase showed dependence on the cooling rate of the sample. At the cooling rate of 30 K/s, the Fe23B6 phase decomposed to bcc-Fe and Fe2B phases with decreasing temperature. On the contrary, at the cooling rate of 180 K/s, the metastable Fe23B6 phase remained in spite of an appearance of the bcc-Fe phase. By comparing the primary crystalline phase between the Fe83C17 and the Fe83B17 alloys, we suggest that the formability of the metastable Cr23C6-type compound is closely related with the glass-forming ability of Fe-metalloid binary alloys.
1702
Abstract: Beamline I11 at Diamond began accepting users for high resolution powder diffraction experiments in Oct 2008. We present the design, key specifications, performance and the hardware of this new beamline which receives an intense and highly collimated x-ray beam generated by an in-vacuum undulator. With the simple optics (a double-crystal monochromator, harmonic rejection mirrors and slits), a high purity beam of low energy-bandpass X-rays optimised at 15 keV is delivered at the sample. The heavy duty diffraction instrument is designed to have the flexibility to house a variety of sample environments and holds two detection systems to collect high quality diffraction data, i.e. multi-analysing crystals (MAC) for high angular resolution experiments and a fast position sensitive detector (PSD) for time-resolved studies. A recent addition to the beamline capabilities is the installation of a specifically designed gas control system. This allows the in-situ dosing of a powder sample with gases such as hydrogen and carbon dioxide, at low (~10 mbar) and high pressures (<100 bar). In addition a low pressure capillary sample cell is described which is now available to users of the beamline.
1707
Abstract: X-ray micro-tomography has been applied recently in a wide range of research fields (damage in materials, solidification …). Thanks to the high flux of synchrotrons and specific cameras the total time to acquire a scan was considerably reduced. The use of a specific camera based on CMOS technology allows dividing the acquisition time for a complete scan by a factor of 100. Therefore we have been able to perform in situ solidification of aluminium-copper alloys at high cooling rates (between 1 and 10°C/s) and we will show results concerning the evolution of the microstructure in 3D in the early stage of solidification, in particular the morphology of the solid phase and the kinetics of growth.
1713
Abstract: Measurement of shearing stresses, τxz and τyz, by X-ray diffraction technique with two-dimensional detector was studied. The principle which was developed for an area detector type X-ray triaxial stress analysis was adopted for this purpose. In the present method, Debye ring was measured first and its whole part was used for determining shearing stresses. One Debye ring is enough to determine shearing stresses without accurate diffraction data such as lattice spacing in stress free. The result of the simulation showed that the present method is useful for the evaluation of shearing stresses by X-ray diffraction technique.
1719
Abstract: Intermetallic TiAl alloys are a class of innovative high-temperature materials which are developed to replace the substantially denser Ni-base alloys in low-pressure turbine blades of jet engines. By streamlining the production process of these parts, a substantial decrease in production costs can be achieved. To this end, a profound knowledge of the microstructural processes occurring during hot deformation is a prerequisite. To investigate the microstructural development during forming operations, cast and extruded as well as only cast specimens were hot-deformed and the microstructural development investigated in-situ by means of a novel diffraction method. This powder diffraction method utilizes the behavior of individual reflection spots on the Debye-Scherrer rings for deriving the materials response to the deformation imposed. It was found that the behavior of the two specimens is rather similar, although the starting microstructures show pronounced differences.
1725
Abstract: Broaching is an important technique for creating tooth structures in mechanical components. In the present work, the effects of the broaching process on the material state in the near surface region at the root of the tooth was analyzed. The studies were carried out on broached plates made from case hardening steel SAE 5120. The cutting speed and machining condition (cooling lubricant, dry machining) were varied. During broaching with a TiAlN coated tool the cutting forces were monitored. Subsequently, the local residual stresses at the root of the tooth were determined using X-ray diffraction. Further, surface roughness and micro hardness measurements as well as microstructure analysis complement the results. The results indicate that cutting forces have a high influence on the development of the residual stress state at the machined surface whereas no significant effect on changes in surface hardness and microstructure could be observed. Dry cutting with relatively high cutting speeds (≥ 30m/min) result in low cutting forces and hence in high tensile residual stresses in broaching direction.
1731
Abstract: The phase evolution during the sintering of metal injection moulded stainless steel, 316Land 17-4PH, has been observed using in situ neutron diffraction and Rietveld analysis. The formationof the ferrite phase in the final product is associated with the production of -ferrite at high temperatures.Coexistence of phases at high temperature is thought to allow the segregation of alloyingelements, stabilising the ferrite to lower temperature. To prevent ferrite in the final products the sinteringmust occur at a lower temperature than that at which -ferrite is formed. An alternative regimeis proposed in which the temperature would be cycled around the formation temperature of -ferrite.
1737
Abstract: In the present work, solidification of hypoeutectic, eutectic and hypereutectic Al-Cu alloys was illustrated by synchrotron X ray imaging, and the CET of hypoeutectic alloy was picked out to thorough investigated. The mechanism of hypoeutectic dendrites fragment behaviors among the nucleation area was studied by in-situ imaging and first-principles computation. The results show that the density difference between the fragments and the enriched melt leads to the movement of the fragments. The ejected fragments contributed to the columnar-eutectic transition and expanded the breadth of mush zone in front of the solid/liquid interface.
1743
Abstract: Ultrafine-grained metals whose grain size is less than one micron have attracted interest as high strength materials. Whereas nanostructured metals produced by severe plastic deformation express remarkably peculiar behavior in both material and mechanical aspects, its mechanism has been clarified by neither experimental nor computational approaches. In this study, we develop a multiscale crystal plasticity model considering an effect of grain boundary. In order to express release of dislocation from grain boundaries, information of misorientation is introduced into a hardening law of crystal plasticity. In addition, carrying out FE simulation for FCC polycrystal, the stress-strain responses such as increase of yield stress due to existence of grain boundary are discussed. We investigate comprehensively the effect of dislocation behavior on the material property of nanostructured metal.
1751
Abstract: The Armco iron is one of the purest commercial iron with very low levels of carbon, oxygen and nitrogen. In order to improve the mechanical properties, it is worth applying severe plastic deformation to obtain ultrafine-grained bulk materials, with grain size lower than 1 μm. In this study, samples of Armco iron were subjected to a technique of severe plastic deformation named Accumulative Roll Bonding (ARB). This method consists in rolling to 50% two sheets pack of which the stacked surfaces were initially cleaned. Then, the rolled strip is sectioned in two halves, cleaned and stacked again and the procedure of roll-bonding repeated. Practically, the process can be repeated without limits. The important parameter of ARB is the number of cycles and then the consequent number of layers of the final sample. By means of the Electron Backscattered Diffraction (EBSD) technique, the evolution of both microstructure and texture as regard to the number of ARB cycles was studied. The analysis of mean grains size and high angle grain boundaries (HAGB) fraction as a function of the number of cycles showed an early formation of a subgrained structure with low angle boundaries and then the evolution of the microstructure towards an ultrafine-grained structure with an increase of HAGB.
1757

Showing 281 to 290 of 505 Paper Titles