Grain Growth Control in Grain Boundary Engineered Microstructures

Article Preview

Abstract:

Grain boundary engineering (GBE) to promote degradation-resistant interfaces in the microstructure usually requires that the grain size remains small so that strength is not compromised. Aspects of grain size measurement and control will be reviewed and discussed for a variety of GBE materials such as copper, nickel, nickel-based alloys and austenitic stainless steels, particularly in the light of the high proportion of annealing twins that constitute the GBE microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

103-108

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Randle V., (2004) Twinning-related grain boundary engineering (overview), Acta Mater., 52, 4067-4081.

DOI: 10.1016/j.actamat.2004.05.031

Google Scholar

[2] B. Reed, M. Kumar, W. R. Minich and R. E. Rudd: Acta. Mater., 2008, 56, 3278.

Google Scholar

[3] 21. D.S. Lee, H.S. Ryoo and S.K. Hwang: Mater. Sci. Eng., 2003, A354, 106.

Google Scholar

[4] Saylor DM, El-Dasher BS, Rollett AD, Rorher GS. Acta Mater 2004; 52: 3649.

Google Scholar

[5] Randle V., Rohrer G., Kim C. and Hu Y, (2006) Changes in the five-parameter grain boundary character distribution in alpha-brass brought about by iterative thermomechanical processing. Acta Mater., 54, 4489-4502.

DOI: 10.1016/j.actamat.2006.05.035

Google Scholar

[6] D. P. Field, L.T. Bradford, M. M. Nowell and T. M. Lillo: Acta. Mater., 2007, vol. 55, pp.4233-41.

Google Scholar

[7] Owen GT and Randle V, (2006) On the role of iterative processing in grain boundary engineering, Scripta Mater., 55, 959-962.

DOI: 10.1016/j.scriptamat.2006.04.049

Google Scholar

[8] M. Shimada ∗, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe Acta Materialia 50 (2002) 2331–2341.

DOI: 10.1016/s1359-6454(02)00064-2

Google Scholar

[9] K. Kashihara and F. Inoko: Acta. Mater., 2001, vol. 49, pp.3051-61.

Google Scholar

[10] B. Alexandreanu, B. H. Sencer, V. Thaveeprungsriporn and G. S. Was: Acta. Mater., 2003, vol. 51, pp.3831-48 L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu: Science, 2004, vol. 304, pp.422-26.

Google Scholar

[11] Lu L Shen Y Chen X Qian L Lu K. Science 2004; 304: 422.

Google Scholar

[12] E. M. Lehockey and A. M. Brennenstuhl: Corrosion Science, 2004, vol. 46 (10), pp.2383-2404.

Google Scholar

[13] Randle V. and Coleman M., (2009) A study of low-strain and medium-strain grain boundary engineering. Acta Mater., 57, 3410-3421.

DOI: 10.1016/j.actamat.2009.04.002

Google Scholar

[14] Coleman M. and Randle V. (2009) Changes in interface parameters and tensile properties as a consequence of iterative processing. Met. Mater. Trans. A., 39, 2175-2183.

DOI: 10.1007/s11661-008-9574-6

Google Scholar

[15] W. J. Babyak, F. N. Rhines: TMS-AIME., 1960, vol. 218, pp.21-23.

Google Scholar

[16] L. Tan, K. Sridharan and T.R. Allen: J. Nucl. Mater., 2007, 371, 171.

Google Scholar

[17] W.Z. Jin, S. Yang, H. Kokawa, Z.J. Wang, Y.S. Sato: J. Mater. Sci. and Tech., 2007, 23, 785.

Google Scholar