Stored Energy of Goss Grains in Fe-3%Si Steel after Cold Rolling

Article Preview

Abstract:

According to a sub-boundary enhanced solid-state wetting mechanism, abnormally-growing Goss grains in Fe-3%Si steel are expected to have exclusively sub-boundaries which would be formed during primary recrystallization. This microstructural feature is related with the stored energy of Goss grains after cold rolling. To investigate the possibility of existence of sub-boundary exclusively in Goss grains after primary recrystallization, the deformation feature focused on stored energy of Goss and other specific orientations was analyzed by crystal plasticity finite element method calculations. The calculations indicated that Goss grains stored the lowest energy among the orientations formed after plane strain deformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

109-114

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. P. Goss: Trans. Am. Soc. Met 23 (1935) 511.

Google Scholar

[2] Y. Inokuti, C. Maeda and Y. Ito: ISIJ Int 70 (1984) (2057).

Google Scholar

[3] M. Matsuo: ISIJ Int 29 (1989) 809.

Google Scholar

[4] M. Matsuo, T. Sakai and S. Yozo: Metall Trans 17A (1986) 1313.

Google Scholar

[5] Y. Shimizu, Y. Ito and Y. Iida: Metall Trans 17A (1986) 1323.

Google Scholar

[6] D. Dorner, S. Zaefferer and D. Raabe: Acta Mater 55 (2007) 2519.

Google Scholar

[7] K. J. Ko, P. R. Cha, D. Srolovitz and N. M. Hwang: Acta Mater. 57 (2009) 838.

Google Scholar

[8] D. K. Lee, K. J. Ko, B. J. Lee and N. M. Hwang: Scripta Mater 58 (2008) 683.

Google Scholar

[9] D. K. Lee, B. J. Lee, K. J. Ko and N. M. Hwang: Mater. Trans. 50 (2009) 2521.

Google Scholar

[10] H. K. Park, S. D. Kim, S. C. Park, J. T. Park and N. M. Hwang: Scripta Mater. 62 (2010) 376.

Google Scholar

[11] R. J. Asaro: Adv. Appl. Mech 23 (1983) 1.

Google Scholar

[12] S. R. Kalidindi, C. A. Bronkhorst and L. Anand: J. Mech. Phys. Solids 40 (1922) 537.

Google Scholar

[13] ABAQUS(version 6. 5) Analysis User`s manual (Hibbitt, Karlsson, and Sorensen Inc., Pawtucket, 2004).

Google Scholar

[14] D. Peirce, R. J. Asaro and A. Needelman: Acta Mater. 33 (1985) 923.

Google Scholar

[15] D. N. Lee: Texture and related phenomena (The Korean Institute of Metals and Materials, Seoul, 2006).

Google Scholar

[16] L. Anand: Int. J. Plust. 1 (1985) 213.

Google Scholar

[17] J. Bishop and R. Hill: Phil. Mag. 42 (1951) 414.

Google Scholar

[18] J. Bishop and R. Hill: Phil. Mag. 42 (1951) 1298.

Google Scholar

[19] J. Boeslau and D. Raabe: Mater. Sci. Forum 157-162 (1994) 501.

Google Scholar

[20] D. Raabe: Steel Res. 66 (1995).

Google Scholar

[112] orientation. Fig. 3 (a) The percentage of remaining rotated cube orientation and (b) the plastic strain energy. Initially the rotated cube orientation surounded by 111112 orientation. Fig. 1 Fig. 2 Fig. 3.

DOI: 10.17816/0321-4443-105810-534282

Google Scholar