Origin of Goss Texture during Secondary Recrystallisation in Silicon-Steel

Article Preview

Abstract:

Primary recrystallised sheets of 3% silicon steel from two different industrial processing routes have been examined after laboratory annealing to initiate secondary recrystallisation. Metallography included etching to reveal individual dislocations and sub-boundaries as well as EBSD in scanning electron microscopy. Residual low angle boundaries are not normally observed inside the secondary grains. The growth of secondaries appears to occur in a jerky manner, associated with local intrusions into the primary matrix that destabilise the interface. The frequency of occurrence of special low energy grain boundaries such as 9 and 5 is believed to dictate the selectivity of the Goss orientation in both types of steel sheet.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

73-80

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.E. May and D. Turnbull: Trans. Met. Soc. AIME Vol. 212 (1958), p.212.

Google Scholar

[2] Y. Inokuti, C. Maeda and Y. Itoh: Proc. ICOTOM-6, Tokyo; (1981), p.948.

Google Scholar

[3] N.C. Pease, D.W. Jones, M.H.L. Wise and W.B. Hutchinson: Met. Sci. Vol. 15 (1982), p.203.

Google Scholar

[4] J. Harase and R. Shimizu: Acta Metall. Vol. 38 (1990), p.38.

Google Scholar

[5] P. Lin, G. Palumbo, J. Harase and K.T. Aust: Acta Mater. Vol. 44 (1996), p.4677.

Google Scholar

[6] S. Tsurekawa, T. Ueda, K. Ichikawa, H. Nakashima, Y. Yoshitomi and H. Yoshinaga: Mater. Sci. Forum Vol. 204-206 (1996); p.221.

DOI: 10.4028/www.scientific.net/msf.204-206.221

Google Scholar

[7] Y. Ushigami, K. Kawasaki, K. Nakayama, Y. Suga, J. Harase and N. Takahashi: Mater. Sci. Forum Vol. 157-162 (1994) p.1081.

Google Scholar

[8] H. Homma and B. Hutchinson: Acta Mater. Vol. 51 (2003), p.3795.

Google Scholar

[9] Y. Hayakawa and J.A. Szpunar: Acta Mater. Vol. 45 (1997), p.1285.

Google Scholar

[10] DS. Dorner, L. Lahn and S. Zaefferer: Mater. Sci. Forum Vol. 467-470 (2004), p.129.

Google Scholar

[11] H. Park, D-Y. Kim D-Y, N-M. Hwang, Y-C. Joo, C.H. Han and J-K. Kim: J. App. Phys. Vol. 95 (2004), p.5515.

Google Scholar

[12] K-J. Ko, P-R. Cha, D. Srolovitz and N-M. Hwang: Acta Mater. Vol. 57 (2009), p.838.

Google Scholar

[13] K.J. Ko, J-T. Park, J-K. Kim and N-M. Hwang: Scripta Mater. Vol. 59 (2008), p.764.

Google Scholar

[14] Y. Ushigami, S. Nakamura, S. Takebyashi and S. Suzuki: Mater. Sci. Forum Vol. 408-412 (2002), p.973.

Google Scholar

[15] D.W. Jones, W.B. Hutchinson and M.L.H. Wise: University of Birmingham UK, Internal report CMS-6, (1978), p.11.

Google Scholar

[16] C.E. Morris: Metal Progress Vol. 56 (1949), p.696.

Google Scholar

[17] P.R. Morris and A. Heckler. Advances in X-Ray Analysis Vol. 11 (1968), p.454.

Google Scholar

[18] L. Ryde, B. Hutchinson and T. Kumano: Mater. Sci. Forum Vol. 467-470 (2004) p.739.

Google Scholar

[19] J.W. Cahn, E.A. Holm and D.J. Srolovitz: Mat. Sci. Forum, 1992, 94-96, p.141.

Google Scholar

[20] Y. Ushigami, private communication: (2009).

Google Scholar