Microstructure and Texture Evolution in Metals and Alloys during Intense Plastic Deformation

Article Preview

Abstract:

ntense plastic deformation is generally effective in producing grain refinement. IPD methods include equal channel angular pressing/extrusion (ECAP/ECAE), high-pressure torsion (HPT), accumulative roll bonding (ARB), and friction stir processing (FSP), among others. In this work, we summarize the main results on grain refinement by these processing methods and present our own data on microstructure and texture evolution in metals and alloys during ECAP, HPT and FSP. Whereas ECAP and HPT are usually performed with the work piece material initially at room temperature or even at liquid nitrogen temperature to enhance refinement, FSP involves a brief but complex thermomechanical cycle with peak temperatures up to 0.7 0.9 TMelt. Apparently, materials undergo dynamic recrystallization (DRX) during FSP. DRX also occurs also in metals and alloys of low TMelt due to adiabatic heating during HPT performed at room temperature. The paper is devoted to revisiting of previous as well as new results and a comparative analysis of microstructure and texture evolution in commercially pure aluminum and selected pure metals and alloys during ECAP, HPT and FSP in order to illustrate the limits of grain refinement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

51-60

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Gleiter: Acta Mater. Vol. 48 (2000), p.1.

Google Scholar

[2] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov: Mater. Sc. Eng. A, Vol. 168, (1993), p.141.

Google Scholar

[3] R. Z Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[4] R.Z. Valiev, T.G. Langdon: Prog. Mater. Sci. Vol. 51, (2006), p.881.

Google Scholar

[5] A.P. Zhilyaev, T.G. Langdon: Prog. Mater. Sci. Vol. 53, (2008), p.893.

Google Scholar

[6] R.S. Mishra: Adv. Mater. Processes, 2003, Vol. 161, p.43.

Google Scholar

[7] Ya.E. Beygelzimer, V.N. Varyukhin, S.G. Synkov, A.N. Sapronov and V.G. Synkov: Phys. Technol. High-Press: Vol. 9, (1999), p.109.

Google Scholar

[8] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai: Acta Mater. Vol. 47, (1999), p.579.

Google Scholar

[9] A.P. Zhilyaev, T.R. McNelley, T.G. Langdon: J. Mater. Sci. Vol. 42, (2007). p.1517.

Google Scholar

[10] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon: Acta Mater. Vol. 51, (2003), p.753.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[11] A. Vorhauer, R. Pippan: Scripta Mater. Vol. 51, (2004), p.921.

Google Scholar

[12] N.H. Polakowski, E.J. Ripling: Strength and structure of engineering materials (Englewood Cliffs, NJ: Prentice-Hall, 1966).

Google Scholar

[13] M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, L.S. Davydova, V.P. Pilyugin: Phys. Metal. Metall. Vol. 90, (2000), p.604.

Google Scholar

[14] K. Edalati, T. Fujioka and Z. Horita: Mater. Trans. Vol. 50, (2009), p.44.

Google Scholar

[15] J.M. García-Infanta, S. Swaminathan, A.P. Zhilyaev, F. Carreño, O.A. Ruano, T.R. McNelley: Mater. Sci. Eng. A, Vol. 485, (2008), p.160.

Google Scholar

[16] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon: Mater. Sci. Eng. A, Vol. 281, (2000), p.82.

Google Scholar

[17] K. Furuno, H. Akamatsu, K. Oh-ishi, M. Furukawa, Z. Horita, T.G. Langdon: Acta Mater. Vol. 52, (2004), p.2497.

DOI: 10.1016/j.actamat.2004.01.040

Google Scholar

[18] R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee: Scripta Mater. Vol. 42, (2000), p.163.

Google Scholar

[19] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith and C.J. Daws: G.B. Patent 9125978. 8, (1991) and U.S. Patent 5460317, (1995).

Google Scholar

[20] A.P. Zhilyaev, K. Oh-Ishi, T.G. Langdon, T.R. McNelley: Mater. Sci. Eng. A, Vol. 410-411, (2005), p.277.

Google Scholar

[21] C. Xu, Z. Horita, T.G. Langdon: Acta Mater. Vol. 55, (2007), p.203.

Google Scholar

[22] A.P. Zhilyaev, J.M. García-Infanta, F. Carreño, T.G. Langdon, O.A. Ruano: Scripta Mater. Vol. 57, (2007), p.763.

DOI: 10.1016/j.scriptamat.2007.06.029

Google Scholar

[23] Y. Todaka, M. Umemoto, A. Yamazaki, J. Sasaki, K. Tsuchiya: Mater Trans JIM, Vol. 49, (2008), p.7.

Google Scholar

[24] A.P. Zhilyaev and T.R. McNelley: submitted to Journal of Materials Science (2009).

Google Scholar

[25] I. Beyerlein, L. Tóth: Prog. Mater. Sci. Vol. 54, (2009), p.427.

Google Scholar

[26] S. Vogel, I. Beyerlein, M. Bourke, C. Tomé P. Rangaswamy, C. Xu: Mater. Sci. Forum, Vol. 408-412, (2002), p.673.

DOI: 10.4028/www.scientific.net/msf.408-412.673

Google Scholar

[27] T.L. Giles, K. Oh-Ishi, A.P. Zhilyaev, S. Swaminathan, M.W. Mahoney, T.R. McNelley: Metall. Mater. Trans. A, Vol. 40A, (2009), p.104.

Google Scholar

[28] T.R. McNelley, D.L. Swisher, and M.T. Perez-Prado: Metall. Mater. Trans. A, Vol. 33A, (2002), p.279.

Google Scholar

[29] T.R. McNelley, S. Swaminathan, and J.Q. Su: Scripta Mater. Vol. 58, (2008), p.349.

Google Scholar

[30] P.B. Prangnell and C.P. Heason: Acta Mater. Vol. 53, (2005), p.3179.

Google Scholar

[31] R.W. Fonda, J.F. Bingert, and K.J. Colligan: Scripta Mater. Vol. 51, (2004), p.243.

Google Scholar