In Situ Observations and Measurements of Mechanically Induced Grain Boundary Migration in a Scanning Electron Microscope

Article Preview

Abstract:

A novel set-up developed to continuously observe and measure stress driven grain boundary migration is presented. A commercially available tensile/compression SEM unit was utilized for in-situ observations of mechanically loaded samples at elevated temperatures up to 850°C by recording orientation contrast images of bicrystal surfaces. Two sample holders for application of a shear stress to the boundary in bicrystals of different geometry were designed and fabricated. The results of first measurements are presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

819-824

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Gottstein and L. S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, CRC Press (1999).

DOI: 10.1201/9781420054361

Google Scholar

[2] D. A. Molodov: Migration of high angle grain boundaries in metals, Shaker verlag, Aachen (1999).

Google Scholar

[3] D. A. Molodov: in Recrystallization and Grain Growth, edited by G. Gottstein and D. A. Molodov, Springer, Berlin (2001), p.21.

Google Scholar

[4] U. Czubayko, D.A. Molodov, B. -C. Petersen, G. Gottstein, L.S. Shvindlerman: Meas. Sci. Technol. Vol. 6 (1995), p.947.

DOI: 10.1088/0957-0233/6/7/014

Google Scholar

[5] P. J. Konijnenberg, A. Ziemons, D. A. Molodov, G. Gottstein: Rev. Sci. Instrum. Vol. 79 (2008), p.013701.

Google Scholar

[6] D. M. Kirch, A. Ziemons, T. Burlet, I. Lischewski, X. Molodova, D. A. Molodov, G. Gottstein: Rev. Sci. Instrum. Vol. 79 (2008), p.043902.

DOI: 10.1063/1.2908434

Google Scholar

[7] J. Washburn and E. R. Parker: Trans AIME Vol. 194 (1952), p.1076.

Google Scholar

[8] C. H. Li, E. H. Edwards, J. Washburn and E. R. Parker, Acta Metall. Vol. 1 (1953), p.223.

Google Scholar

[9] D. W. Bainbridge, C. H. Li and E. H. Edwards: Acta Metall. Vol. 2 (1954), p.322.

Google Scholar

[10] T. Watanabe, S. I. Kimura and S. Karashima: Philos Mag A Vol. 49 (1984), p.845.

Google Scholar

[11] R. Horiuchi, H. Fukutomi and T. Takahashi: Fundamentals of Diffusion Bonding, Elsevier, Amsterdam (1987), p.347.

Google Scholar

[12] H. Fukutomi and T. Kamijo: Scripta Metall. Vol. 19 (1985), p.195.

Google Scholar

[13] H. Fukutomi, T. Iseki, T. Endo and T. Kamijo: Acta Metall. Mater. Vol. 39 (1991), p.1445.

Google Scholar

[14] A. D. Sheikh-Ali, F. F. Lavrentyev and Yu. G. Kazarov: Acta Mater. Vol. 45 (1997), p.4505.

Google Scholar

[15] A. D. Sheikh-Ali and J. A. Szpunar: Mater Sci Eng. Vol. A245 (1998), p.49.

Google Scholar

[16] H. Yoshida, K. Yokoyama, N. Shibata, Y. Ikuhara and T. Sakuma: Acta Mater. Vol. 52 (2004), p.2349.

Google Scholar

[17] D. A. Molodov, V. A. Ivanov and G. Gottstein: Acta Mater. Vol. 55 (2007), p.1843.

Google Scholar

[18] D. A. Molodov, T. Gorkaya, G. Gottstein: Mater. Sci. Forum Vols. 558-559 (2007), p.927.

Google Scholar

[19] T. Gorkaya, D. A. Molodov, G. Gottstein: Acta Mater. Vol. 57 (2009), p.5396.

Google Scholar

[20] M. Winning, G. Gottstein and L. S. Shvindlerman: Acta Mater. Vol. 49 (2001), p.211.

Google Scholar

[21] M. Winning: Acta Mater. Vol. 51 (2003), p.6465.

Google Scholar

[22] J. W. Cahn, J. E. Taylor: Acta Mater. Vol. 52 (2004), p.4887.

Google Scholar

[23] J. W. Cahn, Y. Mishin and A. Suzuki: Acta Mater. Vol. 54 (2006), p.4953.

Google Scholar