Modeling of Crack Growth in Steels

Article Preview

Abstract:

The paper discusses issues related to the damage accumulation and cracking in steels. Special attention is paid to the selection of appropriate methods in the modeling of progressive damage development. In special cases, the accumulation of damage and crack propagation may lead to the brutal destruction of machine parts. In addition, some attention was drawn to the conditions that can lead to this brutal destruction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-240

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd Edition. Krieger Publishing Company, 1992.

Google Scholar

[2] R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th Edition. Wiley, 2012.

Google Scholar

[3] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices, in: Proc. 24th ACM National Conference, Association for Computing Machinery, New York, 1969, 157–172.

DOI: 10.1145/800195.805928

Google Scholar

[4] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999) 131-150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[5] J.A. George, J.W-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs NJ 1981.

DOI: 10.1002/bimj.4710260217

Google Scholar

[6] C.F. Gauss, Brief an Gerling vom 26 Dec. 1823, Werke, vol. 9, 278–281, in: Mathematical Tables and Other Aids to Computation (a translation by G.E. Forsythe), vol. 5, 1950, 255–258.

Google Scholar

[7] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards 49 (1952) 409-436.

DOI: 10.6028/jres.049.044

Google Scholar

[8] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Section 2.7.6 Conjugate gradient method for a sparse system, in: Numerical Recipes: The Art of Scientific Computing (3rd ed.), Cambridge University Press, New York 2007, 87-92.

DOI: 10.1086/416228

Google Scholar

[9] Y. Saad, Iterative methods for sparse linear systems (2nd ed.), Society for Industrial and Applied Mathematics, Philadelphia, PA 2003, 181–182.

Google Scholar

[10] T. Sogabe, M. Sugihara, S.L. Zhang, An extension of the conjugate residual method to nonsymmetric linear systems, Journal of Computational and Applied Mathematics 226 (2009) 103-113.

DOI: 10.1016/j.cam.2008.05.018

Google Scholar

[11] S. Stören, J.R. Rice, Localized necking in thin sheets, Journal of the Mechanics and Physics of Solids 23 (1975) 421-441.

DOI: 10.1016/0022-5096(75)90004-6

Google Scholar