Physical and Chemical Characterization of Sorghum Bagasse

Article Preview

Abstract:

The steady rise in emissions from burning fossil fuels has caused increasing concern about their environmental impact. Lignocellulosic biomass can produce alternatives for gasoline and diesel by thermal conversion. Sorghum is used for animal feed since the feed value of its grain is similar to corn. The grain has more protein and fat than corn, but is lower in vitamin A. When compared with corn on a per pound basis grain sorghum feeding value ranges from 90% to nearly equal to corn. The grain is highly palatable to livestock, and intake seldom limits livestock productivity. Sorghum bagasse is the residue of sorghum after milling. The present work had the objective of characterizing sorghum bagasse for energetic use, especially to produce bio-oil by fast pyrolysis. The first step in pyrolysis process is the biomass characterization, since some kinds of particles are not suitable to be processed and need a previous preparation. For sorghum bagasse the performed physical analyses were: size distribution and medium diameter, and solids true density; the main chemical analyses were: ultimate analysis, proximate analysis, chemical composition and gross calorific value.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1683-1688

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Zhang, J. Chang, T. Wang and Y. Xu: Energy Conversion and Management Vol. 48 (2007), p.87.

Google Scholar

[2] Y.L. Zhao, A. Dolat, Y. Steinberger, X. Wang, A. Osman and G.H. Xie; Field Crops Research Vol. 111 (2009), p.55.

Google Scholar

[3] P. Mckendry: Bioresource Technol Vol. 83 (2002), p.37.

Google Scholar

[4] G. Antonopoulou, H.N. Gavala, Skiadas IV, K. Angelopoulos and G. Lyberatos: Analytica Chimica Acta Vol. 99 (2009), p.117.

Google Scholar

[5] D.L. Klass in: Biomass for renewable energy, fuels, and chemicals, edited by: Academic Press, San Diego, London (1998).

Google Scholar

[6] W.C. Yang in: Handbook of Fluidization and Fluid Particle Systems, edited by: Marcel Dekker Inc., New York (2003).

Google Scholar

[7] C.H. Ataíde, C.R. Cardoso and L.R. Borges: Mater. Sci. Forum Vols. 660-661 (2010), p.1105.

Google Scholar

[8] C.R. Cardoso, M.R. Miranda, K.G. Santos and C.H. Ataíde: Journal of Analytical and Applied Pyrolysis (2010), doi: 10. 1016/j. jaap. 2011. 07. 013, in press.

Google Scholar

[9] A.V. Bridgwater in: Progress in thermochemical biomass conversion, edited by: Blackwell Science Ltd., London (2001).

Google Scholar

[10] J.C. Lepé, R. Dauwe, K. Morreel, V. Storme, C. Lapierre, B. Pollet, A. Naumann, K.Y. Kang, H. Kim, K. Ruel, A. Lefèbvre, J.P. Joseleau, J. Grima-Pettenati, R. Rycke, S. Andersson-Gunnera, A. Erban, I. Fehrle, M. Petit-Conil, J. Kopka, A. Polle, E. Messens, B. Sundberg, S.D. Mansfield, J. Ralph, G. Pilate and W. Boerjan: The Plant Cell Vol. 19 (2007).

DOI: 10.1105/tpc.107.054148

Google Scholar

[11] M. Garcìa-Pèrez, A. Chaal and C. Roy: Journal of Analytical and Applied Pyrolysis Vol. 65 (2002), p.111.

Google Scholar

[12] M. Asadullah, T. Miyazawa, S. Ito, Y. Kunimori, M. Yamada and K. Tomishige: Appl. Catal. A. Vol. 267 (2004), p.95.

Google Scholar

[13] D. Vamvuka, E. Kakaras, E. Kastanaki and P. Grammelis: Fuel Vol. 82 (2003), p. (1949).

DOI: 10.1016/s0016-2361(03)00153-4

Google Scholar

[14] S. Naik, V.V. Goud, P.K. Rout, K. Jacobson and A.K. Dalai: Renewable Energy Vol. 35 (2010), p.1624.

DOI: 10.1016/j.renene.2009.08.033

Google Scholar

[15] Y.H. Yu, S.D. Kim, J.M. Lee and K. H. Lee: Energy Vol. 27 (2002), p.457.

Google Scholar

[16] P. Anselmo and O., Badr: Appl. Energy Vol. 77 (2004), p.51.

Google Scholar