Strap Repair Optimization by Using Embedded Patches

Article Preview

Abstract:

Adhesively-bonded techniques offer an attractive option for repair of aluminium structures, and currently there are three widely used configurations, i.e., single-strap (SS), double-strap (DS) and scarf repairs. SS and DS repairs are straightforward to execute but stresses in the adhesive layer peak at the ends of the overlap. DS repairs additionally require both sides of the damaged structures to be reachable for repair, which is often not possible. In these repair configurations, some limitations emerge such as the weight, aerodynamic performance and aesthetics. The scarf repair is more complex to fabricate but stresses are more uniform along the adhesive bondline. Few studies of SS and DS repairs with embedded patches, such that these are completely flush with the adherends, are available in the literature. Furthermore, no data is available about the effects of geometrical and material parameters (e.g. the Young’s modulus of adhesive, E) on the mechanical behaviour optimization of embedded repairs. For this purpose, in this work standard SS and DD repairs, and also with embedded patches in the adherends, were tested under tension to allow the geometry optimization, by varying the overlap length (LO), thus allowing the maximization of the repairs strength. The influence of the patch embedding technique, showing notorious advantages such as aerodynamic or aesthetics, was compared in strength with standard strap repairs, for the viability analysis of its implementation. As a result of this work, some conclusions were drawn for the design optimization of bonded repairs on aluminium structures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

1036-1041

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Luo, L. Tong, Fully-coupled nonlinear analysis of single lap adhesive joints, Int. J. Solids Struct. 44 (2007) 2349-2370.

DOI: 10.1016/j.ijsolstr.2006.07.009

Google Scholar

[2] R. D. S. G. Campilho, M. F. S. F de Moura, J. J. M. S. Domingues, Modelling single and double-lap repairs on composite materials, Compos. Sci. Technol. 65 (2005) 1948-1958.

DOI: 10.1016/j.compscitech.2005.04.007

Google Scholar

[3] H. Osnes, A. Andersen, Computational analysis of geometric nonlinear effects in adhesively bonded single lap joints, Compos.: Part B – Eng. 34 (2003) 417-427.

DOI: 10.1016/s1359-8368(03)00023-4

Google Scholar

[4] R. D. S. G. Campilho, M. F. S. F. de Moura, A. M. G. Pinto, J. J. L. Morais, J. J. M. S. Domingues, Modelling the tensile fracture behaviour of CFRP scarf repairs, Compos.: Part B – Eng. 40 (2009) 149-157.

DOI: 10.1016/j.compositesb.2008.10.008

Google Scholar

[5] A. R. Rispler, L. Tong, G. P. Steven, M. R. Wisnom, Shape optimization of adhesive fillets, Int. J. Adhes. Adhes. 20 (2000) 221-231.

DOI: 10.1016/s0143-7496(99)00047-0

Google Scholar

[6] R. D. Adams, R. W. Atkins, J. A. Harris, A. J. Kinloch, Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints, J. Adhesion 20 (1986) 29-53.

DOI: 10.1080/00218468608073238

Google Scholar

[7] V. K. Ganesh, T. S. Choo, Modulus graded composite adherends for single-lap bonded joints, J. Compos. Mater. 36 (2002) 1757-1767.

DOI: 10.1177/0021998302036014172

Google Scholar

[8] G. Fessel, J. G. Broughton, N. A. Fellows, J. F. Durodola, A. R. Hutchinson, Evaluation of different lap-shear joint geometries for automotive applications, Int. J. Adhes. Adhes. 27 (2007) 574-583.

DOI: 10.1016/j.ijadhadh.2006.09.016

Google Scholar

[9] L. F. M. da Silva, R. A. M. da Silva, J. A. G. Chousal, A. M. G. Pinto, Alternative methods to measure the adhesive shear displacement in the thick adherend shear test, J. Adhes. Sci. Technol. 22 (2008) 15-29.

DOI: 10.1163/156856108x292241

Google Scholar

[10] R. D. S. G. Campilho, M. D. Banea, A. M. G. Pinto, L. F. M. da Silva, A. M. P. de Jesus, Strength prediction of single and double-lap joints by finite element modelling, Int. J. Adhes. Adhes. in press.

DOI: 10.1016/j.ijadhadh.2010.09.008

Google Scholar

[11] ASTM-E8M-04, Standard test methods for tension testing of metallic materials [Metric] (2004).

Google Scholar

[12] P. Reis, F. Antunes, J. A. M. Ferreira, Influence of superposition length on mechanical resistance of single-lap adhesive joints, Compos. Struct. 67 (2005) 125-133.

DOI: 10.1016/j.compstruct.2004.01.018

Google Scholar