Modelling the Mechanical Behavior of Polymer-Based Nanocomposites

Article Preview

Abstract:

Molecular dynamics simulations were employed to analyze the mechanical properties of polymer-based nanocomposites with varying nanofiber network parameters. The study was focused on nanofiber aspect ratio, concentration and initial orientation. The reinforcing phase affects the behavior of the polymeric nanocomposite. Simulations have shown that the fiber concentration has a significant effect on the properties, with higher loadings resulting in higher stress levels and higher stiffness, matching the general behavior from experimental knowledge in this field. The results also indicate that, within the studied range, the observed effect of the aspect ratio and initial orientation is smaller than that of the concentration, and that these two parameters are interrelated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

543-548

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Uhlherr, D. Theodorou, Hierarchical simulation approach to structure and dynamics of Polymers, Solid State & Materials Science, 3 (1998) 544-551.

DOI: 10.1016/s1359-0286(98)80023-5

Google Scholar

[2] Q. Zenga, A. Yua, G. Lu, Multiscale modeling and simulation of polymer nanocomposites, Prog. Polym. Sci., 33 (2008) 191–269.

Google Scholar

[3] M. Fermeglia, S. Pricl, Multiscale molecular modeling of dispersion of nanoparticles in polymer systems of industrial interest, Springer Science, 1 (2009) 261-270.

DOI: 10.1007/978-1-4020-9557-3_27

Google Scholar

[4] S. Fossey, Performance of Plastics, W. Brostow ed., Hanser, Munich, p.63 (2000).

Google Scholar

[5] R. Simões, G. R. Dias, J. C. Viana, A. M. Cunha, Multi-scale Hierarchical Approach for Mechanical Analysis of Polymeric Materials, in G.C. Sih, P.M.S.T. de Castro eds., Analytical, Numerical and Experimental Simulation, p.229. ISBN 972-8953-07-0 (2006).

Google Scholar

[6] A. Nakano, M. Bachlechner, R. Kalia, E. Lidorikis, P. Vashishta, G. Voyiadjis, T. Campbell, S. Ogata and F. Shimojo, Multiscale Simulation of Nanosystems, IEEE, 1 (2001) 1521-1615.

DOI: 10.1109/5992.931904

Google Scholar

[7] R. J. Crawford, Plastics Engineering, third ed., Butterworth-Heinemann, Oxford, 1998.

Google Scholar

[8] R.Simões, A.M. Cunha, W.Brostow, Molecular dynamics simulations of polymer viscoelasticity Effect of the loading conditions and creep behavior, Mater. Sci. Eng., 14 (2006) 157.

DOI: 10.1088/0965-0393/14/2/003

Google Scholar

[9] T. H. Courtney, Mechanical Behavior of Materials, 2nd ed., McGraw Hill, Boston, 2000.

Google Scholar

[10] T. S. Gates, J. A. Hinkley, Modeling and simulation of nanostructured materials and systems, NASA, TM-212163, 2003.

Google Scholar

[11] F. Hedman, Algorithms for Molecular Dynamics Simulations, PhD Thesis, University of Stockholm, ISBN 91-7155-277-4 (2006).

Google Scholar

[12] W. Van Gunsteren, Mathematical Frontiers in Computational Chemical Physics, in: D.G. Truhlar ed., IMA-Mathematics and its Applications, Springer, New York, 1988, pp.136-156.

Google Scholar

[13] S. Alam, J. Vetter, Performance Characterization of Molecular Dynamics Techniques for Biomolecular Simulations, ACM 1-59593-189-9 (2006).

Google Scholar

[14] M. Bulacu, Molecular Dynamics Studies of Entangled Polymer Chains, PhD Thesis University of Groningen, ISBN: 978-90-367-3307-6 (2008).

Google Scholar

[15] M. Allen, Introduction to MD Simulations, Computational Soft Matter, 23, (2004) 1-28.

Google Scholar

[16] W. Brostow, A. M. Cunha, R. Simoes, Mater. Res. Innovat., 7 (2003) 19.

Google Scholar

[17] W. Brostow, M. Donahue III, C.E. Karashin, R. Simoes, Graphical modeling and computer animation of tensile deformation in PLCs, Mater. Res. Innovat., 4 (2001) 75.

DOI: 10.1007/pl00010784

Google Scholar

[18] R. Simoes, A. M. Cunha, W. Brostow, Polymers, 67 (2004).

Google Scholar

[19] P. J. Flory, Statistical Mechanics of Chain Molecules, 2nd ed., Wiley & Sons, New York, 1973.

Google Scholar