[1]
A.K. Jena, M.C. Chaturvedi, J. Mat. Sci. 19 (1984) 3121-3139.
Google Scholar
[2]
C.Y. Cui, H.F. Gu, D.H. Ping, H. Harada, T. Fukuda, Mat. Sci. and Eng. A 485 (2008) 651-656.
Google Scholar
[3]
R. Bucher, B. Demé, H. Heinrich, J. Kohlbrecher, M. Kompatscher, G. Kostorz, J.-M. Schneider, B. Schönfeld, M. Zolliker, Mat. Sci. and Eng. A 324 (2002) 77-81.
DOI: 10.1016/s0921-5093(01)01287-4
Google Scholar
[4]
R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock, Metallurgical and Materials Transactions 40A (2009) 1588-1603.
DOI: 10.1007/s11661-009-9858-5
Google Scholar
[5]
R.J. Mitchell, M. Preuss, S. Tin, M.C. Hardy, Mat. Sci. and Eng. A 473 (2008) 158-165.
Google Scholar
[6]
C.C. Jia, K. Ishida, T. Nishizawa, in: J.E. Morral, R.S Schiffman, S.M. Merchant (Eds.), Experimental Methods Phase Diagram Determination, The Minerals, Metals and Materials Society, Warrendale, PA, 1994, pp.31-38.
Google Scholar
[7]
J.S. Van Sluytman, A. La Fontaine, J.M. Cairney, T.M. Pollock, Acta Materialia 58 (2010) 1952–1962.
DOI: 10.1016/j.actamat.2009.11.038
Google Scholar
[8]
Thermo-Calc R, Foundation of Computational Thermodynamics, Stockholm, Sweden, 2006.
Google Scholar
[9]
L. Kaufman, H. Bernstein, Computer calculation of phase diagrams, Academic Press, New York, 1970.
Google Scholar
[10]
N. Dupin, Ni-Ti-W thermodynamic parameters, Personal communication, 2006.
Google Scholar
[11]
A.F. Guillermet, L. Östlund, Met. Trans. 17A (1986) 1809-1823.
Google Scholar
[12]
P. Hohenberg, W. Kohn, Phys Rev. 136 (1964) B864-B871.
DOI: 10.1103/physrev.136.b864
Google Scholar
[13]
P.E. Blöchl, Phys Rev. B 50 (1994) 17953–17979.
Google Scholar
[14]
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.
Google Scholar
[15]
G. Kresse, J. Furthmüller, Comp. Mat. Sci. 6 (1996) 15-50.
Google Scholar
[16]
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758–1775.
Google Scholar
[17]
MedeA, Materials Design, Inc., <http://www.MaterialsDesign.com>, 2009.
Google Scholar
[18]
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
Google Scholar
[19]
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396–1396.
DOI: 10.1103/physrevlett.78.1396
Google Scholar
[20]
K.H.J. Buschow, P.G. van Engen, R. Jongebreur, J. Magn. Magn. Mater. 38 (1983) 1-22.
Google Scholar
[21]
Y. Mishima, S. Ochiai, T. Suzuki, Acta Metall. 33 (1985) 1161-1169.
Google Scholar
[22]
D. M. Poole, W. Hume-Rothery, J. Inst. of Metals 83 (1955) 473-480.
Google Scholar
[23]
S. Ochiai, Y. Mishima, T. Suzuki, Bulletin of Research Laboratory of Precision Machinery and Electronics, Tokio Inst. Technol. 1984 (1984) 15-28.
Google Scholar
[24]
F. Abe, T. Tanabe, Z. fur Metallkd. 76 (1985) 420-425.
Google Scholar
[25]
E. Epremian, D. Harker, Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers 185 (1949) 267-273.
Google Scholar
[26]
M. Lambrigger, J. Phys. Chem. Solids 52 (1991) 913-914.
Google Scholar
[27]
A. Taylor, R.W. Floyd, Acta Cryst. 3 (1950) 285-289.
Google Scholar
[28]
M. Winter, <http://www.webelements.com/nickel/thermochemistry.html>, 2009.
Google Scholar
[29]
L.B. Pankratz, Thermodynamic Properties of Carbides, Nitrides, and other Selected Substances, U.S. Dept. of the Interior, Washington, DC, 1995.
Google Scholar
[30]
I. Barin, Thermochemical Data of Pure Substances, VCH Verlags Gesellschaft, Weinheim, 1989, p.1084.
Google Scholar
[31]
A.C. Larson, R.B. von Dreele, GSAS Generalized Structure Analysis System, LANSCE, Los Alamos, 2004.
Google Scholar