Experimental and First Principles Study of the Ni-Ti-W System

Article Preview

Abstract:

Nickel based superalloys are structural materials with a chemical composition and structure which has been developed to enable good high temperature performances leading to a wider range of applications. Their unique properties are due to their microstructure characterized by the coexistence of L12-ordered intermetallic precipitates like Ni3Al or Ni3Ti - g’ phase - in a face-centered cubic nickel based solid solution matrix, (Ni) - g phase. Solid solution strengthening at high temperatures can also be provided by the addition of refractory alloying elements, like tungsten, W. Therefore, the mechanical properties behaviour of the alloys is very strongly related to their composition and microstructures. The purpose of this work is to study the effect of composition and microstructures in a series of Ni-rich prototype alloys, Ni100-2x–Tix–Wx (in which x is in at.%), in order to understand and ultimately optimize the performance of these materials. The adopted strategy was to combine experimental studies using Neutron Diffraction, Electron Probe Micro Analysis – EPMA, Differential Scanning Calorimeter – DSC and micro-hardness measurements, with first principles calculations for structure optimization and Gibbs energies at different temperatures, for each phase, leading to thermodynamic assessment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

775-780

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Jena, M.C. Chaturvedi, J. Mat. Sci. 19 (1984) 3121-3139.

Google Scholar

[2] C.Y. Cui, H.F. Gu, D.H. Ping, H. Harada, T. Fukuda, Mat. Sci. and Eng. A 485 (2008) 651-656.

Google Scholar

[3] R. Bucher, B. Demé, H. Heinrich, J. Kohlbrecher, M. Kompatscher, G. Kostorz, J.-M. Schneider, B. Schönfeld, M. Zolliker, Mat. Sci. and Eng. A 324 (2002) 77-81.

DOI: 10.1016/s0921-5093(01)01287-4

Google Scholar

[4] R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock, Metallurgical and Materials Transactions 40A (2009) 1588-1603.

DOI: 10.1007/s11661-009-9858-5

Google Scholar

[5] R.J. Mitchell, M. Preuss, S. Tin, M.C. Hardy, Mat. Sci. and Eng. A 473 (2008) 158-165.

Google Scholar

[6] C.C. Jia, K. Ishida, T. Nishizawa, in: J.E. Morral, R.S Schiffman, S.M. Merchant (Eds.), Experimental Methods Phase Diagram Determination, The Minerals, Metals and Materials Society, Warrendale, PA, 1994, pp.31-38.

Google Scholar

[7] J.S. Van Sluytman, A. La Fontaine, J.M. Cairney, T.M. Pollock, Acta Materialia 58 (2010) 1952–1962.

DOI: 10.1016/j.actamat.2009.11.038

Google Scholar

[8] Thermo-Calc R, Foundation of Computational Thermodynamics, Stockholm, Sweden, 2006.

Google Scholar

[9] L. Kaufman, H. Bernstein, Computer calculation of phase diagrams, Academic Press, New York, 1970.

Google Scholar

[10] N. Dupin, Ni-Ti-W thermodynamic parameters, Personal communication, 2006.

Google Scholar

[11] A.F. Guillermet, L. Östlund, Met. Trans. 17A (1986) 1809-1823.

Google Scholar

[12] P. Hohenberg, W. Kohn, Phys Rev. 136 (1964) B864-B871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[13] P.E. Blöchl, Phys Rev. B 50 (1994) 17953–17979.

Google Scholar

[14] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.

Google Scholar

[15] G. Kresse, J. Furthmüller, Comp. Mat. Sci. 6 (1996) 15-50.

Google Scholar

[16] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758–1775.

Google Scholar

[17] MedeA, Materials Design, Inc., <http://www.MaterialsDesign.com>, 2009.

Google Scholar

[18] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.

Google Scholar

[19] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396–1396.

DOI: 10.1103/physrevlett.78.1396

Google Scholar

[20] K.H.J. Buschow, P.G. van Engen, R. Jongebreur, J. Magn. Magn. Mater. 38 (1983) 1-22.

Google Scholar

[21] Y. Mishima, S. Ochiai, T. Suzuki, Acta Metall. 33 (1985) 1161-1169.

Google Scholar

[22] D. M. Poole, W. Hume-Rothery, J. Inst. of Metals 83 (1955) 473-480.

Google Scholar

[23] S. Ochiai, Y. Mishima, T. Suzuki, Bulletin of Research Laboratory of Precision Machinery and Electronics, Tokio Inst. Technol. 1984 (1984) 15-28.

Google Scholar

[24] F. Abe, T. Tanabe, Z. fur Metallkd. 76 (1985) 420-425.

Google Scholar

[25] E. Epremian, D. Harker, Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers 185 (1949) 267-273.

Google Scholar

[26] M. Lambrigger, J. Phys. Chem. Solids 52 (1991) 913-914.

Google Scholar

[27] A. Taylor, R.W. Floyd, Acta Cryst. 3 (1950) 285-289.

Google Scholar

[28] M. Winter, <http://www.webelements.com/nickel/thermochemistry.html>, 2009.

Google Scholar

[29] L.B. Pankratz, Thermodynamic Properties of Carbides, Nitrides, and other Selected Substances, U.S. Dept. of the Interior, Washington, DC, 1995.

Google Scholar

[30] I. Barin, Thermochemical Data of Pure Substances, VCH Verlags Gesellschaft, Weinheim, 1989, p.1084.

Google Scholar

[31] A.C. Larson, R.B. von Dreele, GSAS Generalized Structure Analysis System, LANSCE, Los Alamos, 2004.

Google Scholar