First Principles Calculations and Experiments to Determine the Hydrogenation Process of Cu-Li-Mg

Article Preview

Abstract:

Density Functional Theory (DFT) calculations were performed. They were firstly implemented to optimize the structure and refine the stoichiometry of the only ternary compound, CuLi0.08Mg1.92 of the Cu-Li-Mg system. Furthermore using DFT, several possible structures of CuMg2Hx were optimized. Since most of the hydrides are cubic structures or can be considered as distortions of a cubic structure, we have started calculations for CuMg2Hx (x = 4 - 6) with tetragonal and monoclinic structures, similar to those of the hydrides formed by the nearest neighbors of Cu and Mg in the periodic table: NiMg2H4 and CoMg2H5 (e.g. monoclinic C2/c and tetragonal P4/nmm, respectively). It can be concluded that the most stable configuration corresponds to CuMg2H5 with C2/c structure. We have performed several neutron scattering experiments that are in agreement with the first principles calculations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

799-804

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Match, http: /www. crystalimpact. com/, (2009).

Google Scholar

[2] P.M. de Wolff, J.W. Visser, Absolute Intensities. Report 641. 109. Technisch Physische Dienst, Delft, Netherlands. Reprinted Powder Diffract 3 (1988) 202.

Google Scholar

[3] A.C. Larson, R.B. von Dreele, GSAS Generalized Structure Analysis System, LANSCE, Los Alamos, (2004).

Google Scholar

[4] C.L. Farrow, P. Juhas, J.W. Liu, D. Bryndin, E.S. Bozin, J. Bloch, Th. Proffen, S.J.L. Billinge J. Phys.: Cond. Matter. 19 (2007) 335219.

DOI: 10.1088/0953-8984/19/33/335219

Google Scholar

[5] M.H. Braga, J.J.A. Ferreira, J. Siewenie, Th. Proffen, S.C. Vogel, L.L. Daemen, J. of Sol. State Chem. 183(1) (2010) 10.

Google Scholar

[6] K. Yvon, G. Renaudin Hydrides: Solid State Transition Metal Complexes. Encyclopedia of Inorganic Chemistry, (2006).

DOI: 10.1002/0470862106.ia087

Google Scholar

[7] S.F. Parker, U.A. Jayasooriya, J. C. Sprunt, M. Bortz, K. Yvon J. Chem. Soc. Faraday Trans. 94(17) (1998) 2595.

DOI: 10.1039/a803802c

Google Scholar

[8] H.G. Schimmel, M.R. Johnson, G.J. Kearley, A.J. Ramirez-Cuesta, J. Huot, F.M. Mulder, Mat. Sci. Eng. B 108 (2004) 38.

Google Scholar

[9] A. Patah, A. Takasaki, J.S. Szmyd, Mater. Res. Soc. Symp. Proc. 1148-PP03-38, (2009).

Google Scholar

[10] N.W.B. Balasooriya, Ch. Poinsignon, IEEE Inter. Nanoelect. Conf. 2008, 894.

Google Scholar

[11] C. Z. Wu, P. Wang, X. Yao, C. Liu, D.M. Chen, G.Q. Lu, H.M. Cheng, J. Alloys Comp. 420 (2006) 278.

Google Scholar

[12] A. Montone, J. Grbovic, Lj. Stamenkovic, A.L. Fiorini, L. Pasquini, E. Bonetti, M.V. Antisari Mat. Sci. For. 518 (2006) 79.

Google Scholar

[13] M.A. Lillo-Rodenas, K.F. Aguey-Zinsou, D. Cazorla-Amoros, A. Linares-Solano, Z.X. Guo, J. Phys. Chem. C 112 (2008) 5984.

DOI: 10.1021/jp711749h

Google Scholar

[14] P. Tessier, E. Akiba, J. Alloys Comp. 302 (2000) 215.

Google Scholar

[15] S. Milovanovic, L. Matovic, M. Drvendzija, J.G. Novakovic, J. Micros., 232 (3) (2008) 522.

Google Scholar

[16] S. Deledda, A. Borissova, C. Poinsignon, W.J. Botta, M. Dornheim, T. Klassen, J. Alloys Comp. 404-406 (2005) 409.

DOI: 10.1016/j.jallcom.2005.01.115

Google Scholar

[17] H. Shao, Y. Wang, H. Xu, X. Li, J. Sol. State Chem. 178 (2005) 2211.

Google Scholar

[18] P.E. Blochl, Phys. Rev. B 50 (1994) 17953.

Google Scholar

[19] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169; Comp. Mat. Sci. 6 (1996) 1; G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.

Google Scholar

[20] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865; 78 (E) (1997) 1396.

DOI: 10.1103/physrevlett.78.1396

Google Scholar