Photocatalytic Degradation of Dyes by Al2O3-TiO2 and ZrO2-TiO2 Nanocomposites

Article Preview

Abstract:

Al2O3-TiO2 and ZrO2-TiO2 nanocomposites have been prepared by sol-gel method using polyvinylpyrrolidone-polyethylene glycol (PVP-PEG) as templating agents. While Al2O3 in the former is of end-centered monoclinic crystal structure ZrO2 in the latter is a 4:1 blend of monoclinic and tetragonal phases. In both the composites TiO2 is present as anatase. The energy dispersive X-ray spectra provide the compositions of the composites as Al:Ti::1:12 and Zr:Ti::1:1. Scanning electron micrographs display the sizes of Al2O3-TiO2 and ZrO2-TiO2 particles as 30-77 and 38-57 nm, respectively. The diffuse reflectance spectra of both the composites show band gap excitation in the UV-A region. Both the composites display similar photoluminescence and the observed near band gap emission and deep level emission agree with those of TiO2. The impedance spectral studies reveal that the charge-transfer resistance of ZrO2-TiO2 is less than that of Al2O3-TiO2. Both the composites exhibit photoconductance. The photocatalytic activities of the prepared nanocomposites depend on the dye employed. While both the composites degrade methylene blue and rhodamine B effectively under UV-A light the photodegradation of methyl orange is slow. Rhodamine B degrades on both the nanocomposites under visible light also, which is through dye-sensitized photocatalytic mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-333

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[2] D. Zhao, C. Chen, Y. Wang, W. Ma, J. Zhao, T. Rajh, L. Lang, Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: structure, interaction, and interfacial electron transfer, Environ. Sci. Technol. 42 (2008).

DOI: 10.1021/es071770e

Google Scholar

[3] J. -Y. Kim, S.H. Kang, H.S. Kim, Y. -E. Sung, Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells, Langmuir 26 (2010) 2864-2870.

DOI: 10.1021/la902931w

Google Scholar

[4] V. Ganapathy, B. Karunagaran, S. -W. Rhee, Improved performance of dye-sensitized solar cells with TiO2/alumina core-shell formation using atomic layer deposition, J. Power Sources 195 (2010) 5138-5143.

DOI: 10.1016/j.jpowsour.2010.01.085

Google Scholar

[5] J.E. Lee, S. -M. Oh, D. -W. Park, Synthesis of nano-sized Al doped TiO2 powders using thermal plasma, Thin Solid Films 457 (2004) 230-234.

DOI: 10.1016/j.tsf.2003.12.027

Google Scholar

[6] B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Synthesis and characterization of ZrO2-TiO2 binary oxide semiconductor nanoparticles: application and interparticle electron transfer process, Appl. Catal. A 333 (2007) 264-271.

DOI: 10.1016/j.apcata.2007.09.026

Google Scholar

[7] A. Kitiyanan, S. Sakulkhaemaruethai, Y. Suzuki, S. Yoshikawa, Structural and photovoltaic properties of binary TiO2-ZrO2 oxides system prepared by sol-gel method, Comp. Sci. Tech, 66 (2006) 1259-1565.

DOI: 10.1016/j.compscitech.2005.10.035

Google Scholar

[8] C. Karunakaran, A. Vijayabalan, G. Manikandan, P. Gomathisankar, Visible light photocatalytic disinfection of bacteria by Cd-TiO2, Catal. Commun. 12 (2011) 826-829.

DOI: 10.1016/j.catcom.2011.01.017

Google Scholar

[9] C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi, Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light, J. Colloid Interface Sci. 352 (2010) 68-74.

DOI: 10.1016/j.jcis.2010.08.012

Google Scholar

[10] A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamental and applications, second ed., Wiley, New York, (2000).

Google Scholar

[11] C. Karunakaran, S. Narayanan, P. Gomathisankar, Photocatalytic degradation of 1-naphthol by oxide ceramics with added bactericidal disinfection, J. Hazard. Mater. 181 (2010) 708-715.

DOI: 10.1016/j.jhazmat.2010.05.070

Google Scholar

[12] D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C 6 (2005) 186-205.

Google Scholar