[1]
J.P. Silva, S. Sousa, J. Rodrigues, Helena Antunes, J.J. Porter, Isolina Goncalves, Suzana Ferreira-Dias, Adsorption of acid orange 7 dyes in aqueous solutions by spent brewery grains, Separation and Purification Technology. 40 (2004) 309–315.
DOI: 10.1016/j.seppur.2004.03.010
Google Scholar
[2]
T. Robinson, P. Nigam, G. McMullan, R. Marchant, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technology. 77 (2001) 247-255.
DOI: 10.1016/s0960-8524(00)00080-8
Google Scholar
[3]
Z. Sun, Y. Chen, Q. Ke, Y. Yang, J. Yuan, Photocatalytic degradation of cationic azo dye by TiO2/bentonite nanocomposite, Journal of Photochemistry and Photobiology A: Chemistry. 149 (2002) 169–174.
DOI: 10.1016/s1010-6030(01)00649-9
Google Scholar
[4]
I. -H. Cho, K. -D. Zoh. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes and Pigments. 75 (2007) 533-543.
DOI: 10.1016/j.dyepig.2006.06.041
Google Scholar
[5]
A. Alinsafi, F. Evenou, E. M. Abdulkarim, M. N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photocatalysis, Dyes and Pigments. 74 (2007) 439-445.
DOI: 10.1016/j.dyepig.2006.02.024
Google Scholar
[6]
F.H. Abdullah, M.A. Rauf, S.S. Ashraf, Kinetics and optimization of photolytic decoloration of carmine by UV/H2O2, Dyes and Pigments. 75 (2007) 194-198.
DOI: 10.1016/j.dyepig.2006.04.025
Google Scholar
[7]
P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Journal of Advances in Environmental Research. 8 (2004) 501-551.
DOI: 10.1016/s1093-0191(03)00032-7
Google Scholar
[8]
P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment II: hybrid methods, Journal of Advances in Environmental Research. 8 (2004) 553-597.
DOI: 10.1016/s1093-0191(03)00031-5
Google Scholar
[9]
H. -Y. Shu, M. -C. Chang, Decolorisation effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes, Dyes and Pigments. 65 (2005) 25-31.
DOI: 10.1016/j.dyepig.2004.06.014
Google Scholar
[10]
N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Decolourisation and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst, Chemical Engineering Journal. 112 (2005).
DOI: 10.1016/j.cej.2005.07.008
Google Scholar
[11]
N. Modirshla, M. A. Behnajady, Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modeling, Dyes and Pigments. 70 (2006) 54-59.
DOI: 10.1016/j.dyepig.2005.04.012
Google Scholar
[12]
J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, L. Qiao, Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst, Journal of Molecular Catalysis A: Chemical. 260 (2006) 241–246.
DOI: 10.1016/j.molcata.2006.07.033
Google Scholar
[13]
F. . Alshamsi, A.S. Albadwawi, M.M. Alnuaimi, M.A. Rauf, S.S. Ashraf, Comparative efficiencies of the degradation of Crystal Violet using UV/hydrogen peroxide and Fenton's reagent, Dyes and Pigments. 74 (2007) 283-287.
DOI: 10.1016/j.dyepig.2006.02.016
Google Scholar
[14]
M.A. Behnajady, N. Modirshahla, N. Daneshvar, M. Rabbani, Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode, Journal of Hazardous Materials. 140 (2007) 257–263.
DOI: 10.1016/j.jhazmat.2006.07.054
Google Scholar
[15]
A. Aleboyeh, M.E. Olya, H. Aleboyeh, Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process, Chemical Engineering Journal. 137 (2008) 518-524.
DOI: 10.1016/j.cej.2007.05.016
Google Scholar
[16]
D. Georgiou, P. Melidis, A. Aivasidis, K. Gimouhopoulos, Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide, Dyes and Pigments. 52 (2002) 69–78.
DOI: 10.1016/s0143-7208(01)00078-x
Google Scholar
[17]
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical. Reveiw. 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
Google Scholar
[18]
J. C. Garcia, J. L. Oliveira, A. E. C. Silva, C. C. Oliveira, J. Nozaki, N. E. de. Souza, Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems, Journal of Hazardous Materials. 147 (2007).
DOI: 10.1016/j.jhazmat.2006.12.053
Google Scholar
[19]
S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials & Solar Cells. 77 (2003) 65–82.
DOI: 10.1016/s0927-0248(02)00255-6
Google Scholar
[20]
K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh, M. Yoshimura, Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO, Bull. Mater. Sci. 29 5 (2006) 433–438.
DOI: 10.1007/bf02914073
Google Scholar
[21]
N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO, Separation and Purification Technology. 56 (2007) 101-107.
DOI: 10.1016/j.seppur.2007.01.032
Google Scholar
[22]
S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, Journal of Hazardous Materials. 141 (2007) 581–590.
DOI: 10.1016/j.jhazmat.2006.07.035
Google Scholar
[23]
K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic Degradation of Commercial Azo Dyes, Wat. Res. 34 1 (2000) 327-333.
DOI: 10.1016/s0043-1354(99)00093-7
Google Scholar
[24]
C. -S. Lu, F. -D. Mai, C. -W. Wu, R. -J. Wu, C. -C. Chen, Titanium dioxide-mediated photocatalytic degradation of Acridine Orange in aqueous suspensions under UV irradiation, Dyes and Pigments. 76 (2008) 706-713.
DOI: 10.1016/j.dyepig.2007.01.009
Google Scholar
[25]
H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. l Guillard, J. -M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Applied Catalysis B: Environmental. 39 (2002).
DOI: 10.1016/s0926-3373(02)00078-4
Google Scholar
[26]
M. Stylidi, D. I. Kondarides, X.E. Verykios, Mechanistic and kinetic study of solar-light induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, International Journal of Photoenergy. 05 (2003) 59-67.
DOI: 10.1155/s1110662x0300014x
Google Scholar
[27]
C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process, Dyes and Pigments. 49 (2001) 117–125.
DOI: 10.1016/s0143-7208(01)00014-6
Google Scholar
[28]
G. Sivalingam, K. Nagaveni, M.S. Hegde, G. Madras, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2, Applied Catalysis B: Environmental. 45 (2003) 23–38.
DOI: 10.1016/s0926-3373(03)00124-3
Google Scholar
[29]
G. Marci, V. Augugliaro, A.B. Prevot, C. Baiocchi, E.G. Lopez, V. Loddo, L. Palmisano, E. Pramauro, M. Schiavello, Photocatalytic oxidation of methyl-orange in aqueous suspension: comparison of the performance of different polycrystalline titanium dioxide, Annali di Chimica. 93 (2003).
DOI: 10.1163/156856700x00426
Google Scholar
[30]
I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review, Applied Catalysis B: Environmental. 49 (2004) 1–14.
DOI: 10.1016/j.apcatb.2003.11.010
Google Scholar
[31]
B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugensan, Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4, Chemosphere. 46 (2002) 1173-1181.
DOI: 10.1016/s0045-6535(01)00284-3
Google Scholar
[32]
C. Tang, V. Chen, The photocatalytic degradation of reactive black 5 using TiO2/ UV in an annular photoreactor, Water Research. 38 (2004) 2775–2781.
DOI: 10.1016/j.watres.2004.03.020
Google Scholar
[33]
W. Jun, Z. Gang, Z. Zhaohong, Z. Xiangdong, Z. Guan, M. Teng, J. Yuefeng, Z. Peng, L. Ying, Investigation on degradation of azo fuchsine using visible light in the presence of heat-treated anatase TiO2 powder, Dyes and Pigments. 75 (2007).
DOI: 10.1016/j.dyepig.2006.06.007
Google Scholar
[34]
R.J. Tayade, P.K. Surolia, R.G. Kulkarni, R.V. Jasra, Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2, Science and Technology of Advanced Materials. 8 (2007) 455-462.
DOI: 10.1016/j.stam.2007.05.006
Google Scholar
[35]
S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts, Nanoscale Research letters. 4 (2009) 709-719.
DOI: 10.1007/s11671-009-9300-3
Google Scholar
[36]
N. Guettai, H.A. Amar, Photocatalytic oxidation of Methyl Orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study, Desalination. 185 (2005) 427-437.
DOI: 10.1016/j.desal.2005.04.048
Google Scholar
[37]
N. Guettai, H.A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study, Desalination. 185 (2005) 439–448.
DOI: 10.1016/j.desal.2005.04.049
Google Scholar
[38]
M. Muruganandham, M. Swaminathan, Photocatalytic decolorisation and degradation of Reactive Orange 4 by TiO2-UV process, Dyes and Pigments. 68 (2006) 133-142.
DOI: 10.1016/j.dyepig.2005.01.004
Google Scholar
[39]
M. Faisal, M. Abu Tariq, M. Muneer, Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania, Dyes and Pigments. 72 (2007) 233-239.
DOI: 10.1016/j.dyepig.2005.08.020
Google Scholar
[40]
V.K. Gupta, R. Jain, A. Mittal, M. Mathur, S. Sikarwar, Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst, Journal of Colloid and Interface Science. 309 (2007) 464-469.
DOI: 10.1016/j.jcis.2006.12.010
Google Scholar
[41]
M.A. Tariq, M. Faisal, M. Saquib, M. Muneer, Heterogeneous photocatalytic degradation of an anthraquinone and a triphenylmethane dye derivative in aqueous suspensions of semiconductor, Dyes and Pigments. 76 (2008) 358-365.
DOI: 10.1016/j.dyepig.2006.08.045
Google Scholar
[42]
L.M.S. Colpini, H.J. Alves, O.A.A.D. Santos, C.M.M. Costa, Discoloration and degradation of textile dye aqueous solutions with titanium oxide catalysts obtained by the sol-gel method, Dyes and Pigments. 76 (2008) 525-529.
DOI: 10.1016/j.dyepig.2006.10.014
Google Scholar
[43]
R. Jain, S. Sikarwar, Photodestruction and COD removal of toxic dye erioglaucine by TiO2-UV process: influence of operational parameters, International Journal of Physical Sciences. 3 12 (2008) 299-305.
Google Scholar
[44]
J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, Journal of Hazardous Materials. 155 (2008) 312–319.
DOI: 10.1016/j.jhazmat.2007.11.062
Google Scholar
[45]
A. Zaleska, Chacracteristics of doped- TiO2 photocatalysts, Physicochemical Problems of Mineral Processing. 42 (2008) 211-222.
Google Scholar
[46]
F. P. Feng, Z. Zhuo, P. Peng, D.X. Gang, Photodegradation of Methylene Blue in a Batch Fixed Bed Photoreactor Using Activated Carbon Fibers Supported TiO2 Photocatalyst, The Chinese Journal of Process Engineering. 8 1 (2008) 65-71.
Google Scholar
[47]
Y. Wang, G. Zhou, T. Li, W. Qiao, Yanjing Li, Catalytic activity of mesoporous TiO2_xNx photocatalysts for the decomposition of methyl orange under solar simulated light, Catalysis Communications. 10 (2009) 412–415.
DOI: 10.1016/j.catcom.2008.10.007
Google Scholar
[48]
B. Tryba, Increase of the Photocatalytic Activity of TiO2 by Carbon and Iron Modifications, International Journal of Photoenergy. (2008) 15. Article ID 721824: doi: 10. 1155/2008/721824.
DOI: 10.1155/2008/721824
Google Scholar
[49]
A.K. Subramani, K. Byrappa, S. Ananda, K.M.L. Rai, C. Ranganathaiah, M. Yoshimura, Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon, Bull. Mater. Sci. 30 1 (2007) 37–41.
DOI: 10.1007/s12034-007-0007-8
Google Scholar
[50]
J. Menesi, R. Kekesi, L. K. Osi, V. Zollmer, A. Richardt, I. Dekany, The Effect of TransitionMetal Doping on the Photooxidation Process of Titania-Clay Composites, International Journal of Photoenergy. (2008) 1-9. doi: 10. 1155/2008/846304.
DOI: 10.1155/2008/846304
Google Scholar
[51]
J. Li, C. Chen, J. Zhao, H. Zhu, Z. Ding, Photodegradation of dye pollutants on TiO2 pillared bentonites under UV light irradiation, Science in China (Series B). 45 4 (2002) 445-448.
DOI: 10.1360/02yb9057
Google Scholar
[52]
D. Zhao, J. Zhou, N. Liu, Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles, Materials Characterization. 58 (2007) 249–255.
DOI: 10.1016/j.matchar.2006.04.024
Google Scholar
[53]
J.C. Crittenden, J. Liu, D.W. Hand, D.L. Perram, Photocatalytic oxidation of chlorinated hydrocarbons in water, Water Research. 31 1 (1997) 429-438.
DOI: 10.1016/s0043-1354(96)00267-9
Google Scholar
[54]
H.W. Slamet, E.P. Nasution, K. Riyani, J. Gunlazuardi, Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania Catalysts, World Applied Sciences Journal. 6 1 (2009) 112-122.
Google Scholar
[55]
C. Sahoo, A.K. Gupta, A. Pal, Photocatalytic degradation of Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO2, Dyes and Pigments. 66 (2005) 189-196.
DOI: 10.1016/j.dyepig.2004.09.003
Google Scholar
[56]
A.K. Gupta, A. Pal, C. Sahoo, Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2, Dyes and Pigments. 69 (2006) 224-232.
DOI: 10.1016/j.dyepig.2005.04.001
Google Scholar
[57]
N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes, Journal of Molecular Catalysis A: Chemical. 258 (2006) 124–132.
DOI: 10.1016/j.molcata.2006.05.013
Google Scholar
[58]
J. Wang, H. Zhao, X. Liu, X. Li, P. Xu, X. Han, Formation of Ag nanoparticles on water-soluble anatase TiO2 clusters and the activation of photocatalysis, Catalysis Communications. 10 (2009) 1052–1056.
DOI: 10.1016/j.catcom.2008.12.060
Google Scholar
[59]
V.A. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17, Journal of Hazardous Materials. 147 (2007) 906–913.
DOI: 10.1016/j.jhazmat.2007.01.107
Google Scholar
[60]
M.A. Behnajady, N. Modirshahla, M. Shokri, B. Rad, Enhancement of photocatalytic activity of TiO2 nano-particles by silver doping: photodeposition versus liquid impregnation methods, Global Nest Journal. 10 1 (2008) 1-7.
DOI: 10.30955/gnj.000485
Google Scholar
[61]
Y. Liu, C. -Y. Liu, Q. -H. Rong, Z. Zhang, Characteristics of the silver-doped TiO2 nanoparticles, Applied Surface Science. 220 (2003) 7–11.
DOI: 10.1016/s0169-4332(03)00836-5
Google Scholar
[62]
V.M. Menendez-Flores, D. Friedmann, D.W. Bahnemann, Durability of Ag-TiO2 Photocatalysts Assessed for the Degradation of Dichloroacetic Acid, International Journal of Photoenergy. (2008) 11. Article ID 280513, doi: 10. 1155/2008/280513.
DOI: 10.1155/2008/280513
Google Scholar
[63]
G.N. Kryukova, G.A. Zenkovets, A.A. Shutilov, M. Wilde, K. Gunther, D. Fassler, K. Richter, Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 dye upon ultraviolet light, Applied Catalysis B: Environmental. 71 (2007).
DOI: 10.1016/j.apcatb.2006.06.025
Google Scholar
[64]
L. Ravichandran, K. Selvam, B. Krishnakumar, M. Swaminathan, Photovalorisation of Pentafluorobenzoic acid with Platinum doped TiO2, Journal of Hazardous Materials. (2009) doi: 10. 1016/j. jhazmat. 2009. 01. 048.
DOI: 10.1016/j.jhazmat.2009.01.048
Google Scholar
[65]
Y. Zhiyong, M. Bensimon, V. Sarria, I. Stolitchnov, W. Jardim, D. Laub, E. Mielczarski, J. Mielczarski, L. Kiwi-Minsker, J. Kiwi, ZnSO4–TiO2 doped catalyst with higher activity in photocatalytic processes, Applied Catalysis B: Environmental. 76 (2007).
DOI: 10.1016/j.apcatb.2007.05.025
Google Scholar
[66]
V.S.R.R. Pullabhotla, A. Rahman, S.B. Jonnalagadda, Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: An environmentally benign approach, Catalysis Communications. 10 (2009) 365–369.
DOI: 10.1016/j.catcom.2008.09.021
Google Scholar
[67]
Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J. V. Weber, UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension, Journal of Photochemistry and Photobiology A: Chemistry. 183 (2006).
DOI: 10.1016/j.jphotochem.2006.03.025
Google Scholar
[68]
C. Yumin, Photocatalytic degradation of MO by complex nanometer particles WO3/TiO2, Rare Metals. 25 6 (2006) 649-653.
DOI: 10.1016/s1001-0521(07)60007-2
Google Scholar
[69]
M.H. Habibi, N. Talebian, J. Choi, The effect of annealing on photocatalytic properties of nanostructured titanium dioxide thin films, Dyes and Pigments. 73 (2007) 103-110.
DOI: 10.1016/j.dyepig.2005.10.016
Google Scholar
[70]
J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. Gonzalez-Elipe, A. Fernandez, Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz, Applied Catalysis B: Environmental. 13 (1997).
DOI: 10.1016/s0926-3373(96)00107-5
Google Scholar
[71]
C. -C. Chang, J. -Y. Chen, T. -L. Hsu, C. -K. Lin, C. -C. Chan, Photocatalytic properties of porous TiO2/Ag thin films, Thin Solid Films. 516 (2008) 1743–1747.
DOI: 10.1016/j.tsf.2007.05.033
Google Scholar
[72]
I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, D. Labou, S.G. Neophytides, P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Applied Catalysis B: Environmental. 42 (2003) 187–201.
DOI: 10.1016/s0926-3373(02)00233-3
Google Scholar
[73]
N. -S. Mojtaba, M.H. Habibi, Silver Doped TiO2 Nanostructure Composite Photocatalyst Film Synthesized by Sol-Gel Spin and Dip Coating Technique on Glass, International Journal of Photoenergy. (2008).
DOI: 10.1155/2008/628713
Google Scholar
[74]
S.D. Sharma, K.K. Saini, C. Kant, C.P. Sharma, S.C. Jain, Photodegradation of dye pollutant under UV light by nano-catalyst doped titania thin films, Applied Catalysis B: Environmental. 84 (2008) 233–240.
DOI: 10.1016/j.apcatb.2008.04.017
Google Scholar
[75]
C. Liang, C. Liu, F. Li, F. Wu, The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension, Chemical Engineering Journal. 147 2 (2008) 219-225.
DOI: 10.1016/j.cej.2008.07.004
Google Scholar
[76]
O.T. Alaoui, Q.T. Nguyen, T. Rhlalou, Preparation and characterization of a new TiO2/SiO2 composite catalyst for photocatalytic degradation of indigo carmine, Environ Chem Lett. (2008) DOI 10. 1007/s10311-008-0154-1.
DOI: 10.1007/s10311-008-0154-1
Google Scholar
[77]
S. Anandan, Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors, Dyes and Pigments. 76 (2008) 535-541.
DOI: 10.1016/j.dyepig.2006.09.014
Google Scholar
[78]
T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant, Journal of Molecular Catalysis A: Chemical. 287 (2008).
DOI: 10.1016/j.molcata.2008.02.027
Google Scholar
[79]
S. Song, L. Xu, Z. He, H. Ying, J. Chen, X. Xiao, B. Yan, Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst, Journal of Hazardous Materials. 152 (2008).
DOI: 10.1016/j.jhazmat.2007.08.004
Google Scholar
[80]
A.B. Gambhire, B.R. Arbad, M.K. Lande, Photocatalytic activity and Characterization of the Nd-CexTi(1-x)O2 Derived by Sol-Gel Dip Coating Method, Bulletin of the Catalysis Society of India. 7 (2008) 28-40.
Google Scholar