Nano-Photocatalysts in the Treatment of Colored Wastewater - A Review

Article Preview

Abstract:

In the present scenario, the problem of water pollution is remarkable. The need to maintain clean water for both flora and fauna has become a major, even a critical concern. A large number of organic substances are introduced into the natural water system from various sources such as industrial effluents, agricultural runoff and chemical spills. Textiles industries specifically pollute the water sources due to the random use and discharge of various types of dyes. It may significantly affect photosynthetic activity in aquatic life and their presence in drinking water constitutes a potential human health hazard. It is therefore essential either to remove the dyes from water or to treat them in such a way so as to minimize their effects on the environment and also to decolorize the water. Various research works on different processes are reviewed and discussed in the present article. It has been observed that the advanced oxidation processes are used widely to degrade the organic compounds in water. Photocatalytic systems are effective for the degradation of many unwanted complex organic compounds through the use of efficient nanophotocatalysts activated under ultra-violet (UV) irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-363

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Silva, S. Sousa, J. Rodrigues, Helena Antunes, J.J. Porter, Isolina Goncalves, Suzana Ferreira-Dias, Adsorption of acid orange 7 dyes in aqueous solutions by spent brewery grains, Separation and Purification Technology. 40 (2004) 309–315.

DOI: 10.1016/j.seppur.2004.03.010

Google Scholar

[2] T. Robinson, P. Nigam, G. McMullan, R. Marchant, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technology. 77 (2001) 247-255.

DOI: 10.1016/s0960-8524(00)00080-8

Google Scholar

[3] Z. Sun, Y. Chen, Q. Ke, Y. Yang, J. Yuan, Photocatalytic degradation of cationic azo dye by TiO2/bentonite nanocomposite, Journal of Photochemistry and Photobiology A: Chemistry. 149 (2002) 169–174.

DOI: 10.1016/s1010-6030(01)00649-9

Google Scholar

[4] I. -H. Cho, K. -D. Zoh. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes and Pigments. 75 (2007) 533-543.

DOI: 10.1016/j.dyepig.2006.06.041

Google Scholar

[5] A. Alinsafi, F. Evenou, E. M. Abdulkarim, M. N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photocatalysis, Dyes and Pigments. 74 (2007) 439-445.

DOI: 10.1016/j.dyepig.2006.02.024

Google Scholar

[6] F.H. Abdullah, M.A. Rauf, S.S. Ashraf, Kinetics and optimization of photolytic decoloration of carmine by UV/H2O2, Dyes and Pigments. 75 (2007) 194-198.

DOI: 10.1016/j.dyepig.2006.04.025

Google Scholar

[7] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Journal of Advances in Environmental Research. 8 (2004) 501-551.

DOI: 10.1016/s1093-0191(03)00032-7

Google Scholar

[8] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment II: hybrid methods, Journal of Advances in Environmental Research. 8 (2004) 553-597.

DOI: 10.1016/s1093-0191(03)00031-5

Google Scholar

[9] H. -Y. Shu, M. -C. Chang, Decolorisation effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes, Dyes and Pigments. 65 (2005) 25-31.

DOI: 10.1016/j.dyepig.2004.06.014

Google Scholar

[10] N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Decolourisation and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst, Chemical Engineering Journal. 112 (2005).

DOI: 10.1016/j.cej.2005.07.008

Google Scholar

[11] N. Modirshla, M. A. Behnajady, Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modeling, Dyes and Pigments. 70 (2006) 54-59.

DOI: 10.1016/j.dyepig.2005.04.012

Google Scholar

[12] J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, L. Qiao, Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst, Journal of Molecular Catalysis A: Chemical. 260 (2006) 241–246.

DOI: 10.1016/j.molcata.2006.07.033

Google Scholar

[13] F. . Alshamsi, A.S. Albadwawi, M.M. Alnuaimi, M.A. Rauf, S.S. Ashraf, Comparative efficiencies of the degradation of Crystal Violet using UV/hydrogen peroxide and Fenton's reagent, Dyes and Pigments. 74 (2007) 283-287.

DOI: 10.1016/j.dyepig.2006.02.016

Google Scholar

[14] M.A. Behnajady, N. Modirshahla, N. Daneshvar, M. Rabbani, Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode, Journal of Hazardous Materials. 140 (2007) 257–263.

DOI: 10.1016/j.jhazmat.2006.07.054

Google Scholar

[15] A. Aleboyeh, M.E. Olya, H. Aleboyeh, Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process, Chemical Engineering Journal. 137 (2008) 518-524.

DOI: 10.1016/j.cej.2007.05.016

Google Scholar

[16] D. Georgiou, P. Melidis, A. Aivasidis, K. Gimouhopoulos, Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide, Dyes and Pigments. 52 (2002) 69–78.

DOI: 10.1016/s0143-7208(01)00078-x

Google Scholar

[17] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical. Reveiw. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[18] J. C. Garcia, J. L. Oliveira, A. E. C. Silva, C. C. Oliveira, J. Nozaki, N. E. de. Souza, Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems, Journal of Hazardous Materials. 147 (2007).

DOI: 10.1016/j.jhazmat.2006.12.053

Google Scholar

[19] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials & Solar Cells. 77 (2003) 65–82.

DOI: 10.1016/s0927-0248(02)00255-6

Google Scholar

[20] K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh, M. Yoshimura, Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO, Bull. Mater. Sci. 29 5 (2006) 433–438.

DOI: 10.1007/bf02914073

Google Scholar

[21] N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO, Separation and Purification Technology. 56 (2007) 101-107.

DOI: 10.1016/j.seppur.2007.01.032

Google Scholar

[22] S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, Journal of Hazardous Materials. 141 (2007) 581–590.

DOI: 10.1016/j.jhazmat.2006.07.035

Google Scholar

[23] K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic Degradation of Commercial Azo Dyes, Wat. Res. 34 1 (2000) 327-333.

DOI: 10.1016/s0043-1354(99)00093-7

Google Scholar

[24] C. -S. Lu, F. -D. Mai, C. -W. Wu, R. -J. Wu, C. -C. Chen, Titanium dioxide-mediated photocatalytic degradation of Acridine Orange in aqueous suspensions under UV irradiation, Dyes and Pigments. 76 (2008) 706-713.

DOI: 10.1016/j.dyepig.2007.01.009

Google Scholar

[25] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. l Guillard, J. -M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Applied Catalysis B: Environmental. 39 (2002).

DOI: 10.1016/s0926-3373(02)00078-4

Google Scholar

[26] M. Stylidi, D. I. Kondarides, X.E. Verykios, Mechanistic and kinetic study of solar-light induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, International Journal of Photoenergy. 05 (2003) 59-67.

DOI: 10.1155/s1110662x0300014x

Google Scholar

[27] C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process, Dyes and Pigments. 49 (2001) 117–125.

DOI: 10.1016/s0143-7208(01)00014-6

Google Scholar

[28] G. Sivalingam, K. Nagaveni, M.S. Hegde, G. Madras, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2, Applied Catalysis B: Environmental. 45 (2003) 23–38.

DOI: 10.1016/s0926-3373(03)00124-3

Google Scholar

[29] G. Marci, V. Augugliaro, A.B. Prevot, C. Baiocchi, E.G. Lopez, V. Loddo, L. Palmisano, E. Pramauro, M. Schiavello, Photocatalytic oxidation of methyl-orange in aqueous suspension: comparison of the performance of different polycrystalline titanium dioxide, Annali di Chimica. 93 (2003).

DOI: 10.1163/156856700x00426

Google Scholar

[30] I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review, Applied Catalysis B: Environmental. 49 (2004) 1–14.

DOI: 10.1016/j.apcatb.2003.11.010

Google Scholar

[31] B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugensan, Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4, Chemosphere. 46 (2002) 1173-1181.

DOI: 10.1016/s0045-6535(01)00284-3

Google Scholar

[32] C. Tang, V. Chen, The photocatalytic degradation of reactive black 5 using TiO2/ UV in an annular photoreactor, Water Research. 38 (2004) 2775–2781.

DOI: 10.1016/j.watres.2004.03.020

Google Scholar

[33] W. Jun, Z. Gang, Z. Zhaohong, Z. Xiangdong, Z. Guan, M. Teng, J. Yuefeng, Z. Peng, L. Ying, Investigation on degradation of azo fuchsine using visible light in the presence of heat-treated anatase TiO2 powder, Dyes and Pigments. 75 (2007).

DOI: 10.1016/j.dyepig.2006.06.007

Google Scholar

[34] R.J. Tayade, P.K. Surolia, R.G. Kulkarni, R.V. Jasra, Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2, Science and Technology of Advanced Materials. 8 (2007) 455-462.

DOI: 10.1016/j.stam.2007.05.006

Google Scholar

[35] S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts, Nanoscale Research letters. 4 (2009) 709-719.

DOI: 10.1007/s11671-009-9300-3

Google Scholar

[36] N. Guettai, H.A. Amar, Photocatalytic oxidation of Methyl Orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study, Desalination. 185 (2005) 427-437.

DOI: 10.1016/j.desal.2005.04.048

Google Scholar

[37] N. Guettai, H.A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study, Desalination. 185 (2005) 439–448.

DOI: 10.1016/j.desal.2005.04.049

Google Scholar

[38] M. Muruganandham, M. Swaminathan, Photocatalytic decolorisation and degradation of Reactive Orange 4 by TiO2-UV process, Dyes and Pigments. 68 (2006) 133-142.

DOI: 10.1016/j.dyepig.2005.01.004

Google Scholar

[39] M. Faisal, M. Abu Tariq, M. Muneer, Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania, Dyes and Pigments. 72 (2007) 233-239.

DOI: 10.1016/j.dyepig.2005.08.020

Google Scholar

[40] V.K. Gupta, R. Jain, A. Mittal, M. Mathur, S. Sikarwar, Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst, Journal of Colloid and Interface Science. 309 (2007) 464-469.

DOI: 10.1016/j.jcis.2006.12.010

Google Scholar

[41] M.A. Tariq, M. Faisal, M. Saquib, M. Muneer, Heterogeneous photocatalytic degradation of an anthraquinone and a triphenylmethane dye derivative in aqueous suspensions of semiconductor, Dyes and Pigments. 76 (2008) 358-365.

DOI: 10.1016/j.dyepig.2006.08.045

Google Scholar

[42] L.M.S. Colpini, H.J. Alves, O.A.A.D. Santos, C.M.M. Costa, Discoloration and degradation of textile dye aqueous solutions with titanium oxide catalysts obtained by the sol-gel method, Dyes and Pigments. 76 (2008) 525-529.

DOI: 10.1016/j.dyepig.2006.10.014

Google Scholar

[43] R. Jain, S. Sikarwar, Photodestruction and COD removal of toxic dye erioglaucine by TiO2-UV process: influence of operational parameters, International Journal of Physical Sciences. 3 12 (2008) 299-305.

Google Scholar

[44] J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, Journal of Hazardous Materials. 155 (2008) 312–319.

DOI: 10.1016/j.jhazmat.2007.11.062

Google Scholar

[45] A. Zaleska, Chacracteristics of doped- TiO2 photocatalysts, Physicochemical Problems of Mineral Processing. 42 (2008) 211-222.

Google Scholar

[46] F. P. Feng, Z. Zhuo, P. Peng, D.X. Gang, Photodegradation of Methylene Blue in a Batch Fixed Bed Photoreactor Using Activated Carbon Fibers Supported TiO2 Photocatalyst, The Chinese Journal of Process Engineering. 8 1 (2008) 65-71.

Google Scholar

[47] Y. Wang, G. Zhou, T. Li, W. Qiao, Yanjing Li, Catalytic activity of mesoporous TiO2_xNx photocatalysts for the decomposition of methyl orange under solar simulated light, Catalysis Communications. 10 (2009) 412–415.

DOI: 10.1016/j.catcom.2008.10.007

Google Scholar

[48] B. Tryba, Increase of the Photocatalytic Activity of TiO2 by Carbon and Iron Modifications, International Journal of Photoenergy. (2008) 15. Article ID 721824: doi: 10. 1155/2008/721824.

DOI: 10.1155/2008/721824

Google Scholar

[49] A.K. Subramani, K. Byrappa, S. Ananda, K.M.L. Rai, C. Ranganathaiah, M. Yoshimura, Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon, Bull. Mater. Sci. 30 1 (2007) 37–41.

DOI: 10.1007/s12034-007-0007-8

Google Scholar

[50] J. Menesi, R. Kekesi, L. K. Osi, V. Zollmer, A. Richardt, I. Dekany, The Effect of TransitionMetal Doping on the Photooxidation Process of Titania-Clay Composites, International Journal of Photoenergy. (2008) 1-9. doi: 10. 1155/2008/846304.

DOI: 10.1155/2008/846304

Google Scholar

[51] J. Li, C. Chen, J. Zhao, H. Zhu, Z. Ding, Photodegradation of dye pollutants on TiO2 pillared bentonites under UV light irradiation, Science in China (Series B). 45 4 (2002) 445-448.

DOI: 10.1360/02yb9057

Google Scholar

[52] D. Zhao, J. Zhou, N. Liu, Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles, Materials Characterization. 58 (2007) 249–255.

DOI: 10.1016/j.matchar.2006.04.024

Google Scholar

[53] J.C. Crittenden, J. Liu, D.W. Hand, D.L. Perram, Photocatalytic oxidation of chlorinated hydrocarbons in water, Water Research. 31 1 (1997) 429-438.

DOI: 10.1016/s0043-1354(96)00267-9

Google Scholar

[54] H.W. Slamet, E.P. Nasution, K. Riyani, J. Gunlazuardi, Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania Catalysts, World Applied Sciences Journal. 6 1 (2009) 112-122.

Google Scholar

[55] C. Sahoo, A.K. Gupta, A. Pal, Photocatalytic degradation of Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO2, Dyes and Pigments. 66 (2005) 189-196.

DOI: 10.1016/j.dyepig.2004.09.003

Google Scholar

[56] A.K. Gupta, A. Pal, C. Sahoo, Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2, Dyes and Pigments. 69 (2006) 224-232.

DOI: 10.1016/j.dyepig.2005.04.001

Google Scholar

[57] N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes, Journal of Molecular Catalysis A: Chemical. 258 (2006) 124–132.

DOI: 10.1016/j.molcata.2006.05.013

Google Scholar

[58] J. Wang, H. Zhao, X. Liu, X. Li, P. Xu, X. Han, Formation of Ag nanoparticles on water-soluble anatase TiO2 clusters and the activation of photocatalysis, Catalysis Communications. 10 (2009) 1052–1056.

DOI: 10.1016/j.catcom.2008.12.060

Google Scholar

[59] V.A. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17, Journal of Hazardous Materials. 147 (2007) 906–913.

DOI: 10.1016/j.jhazmat.2007.01.107

Google Scholar

[60] M.A. Behnajady, N. Modirshahla, M. Shokri, B. Rad, Enhancement of photocatalytic activity of TiO2 nano-particles by silver doping: photodeposition versus liquid impregnation methods, Global Nest Journal. 10 1 (2008) 1-7.

DOI: 10.30955/gnj.000485

Google Scholar

[61] Y. Liu, C. -Y. Liu, Q. -H. Rong, Z. Zhang, Characteristics of the silver-doped TiO2 nanoparticles, Applied Surface Science. 220 (2003) 7–11.

DOI: 10.1016/s0169-4332(03)00836-5

Google Scholar

[62] V.M. Menendez-Flores, D. Friedmann, D.W. Bahnemann, Durability of Ag-TiO2 Photocatalysts Assessed for the Degradation of Dichloroacetic Acid, International Journal of Photoenergy. (2008) 11. Article ID 280513, doi: 10. 1155/2008/280513.

DOI: 10.1155/2008/280513

Google Scholar

[63] G.N. Kryukova, G.A. Zenkovets, A.A. Shutilov, M. Wilde, K. Gunther, D. Fassler, K. Richter, Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 dye upon ultraviolet light, Applied Catalysis B: Environmental. 71 (2007).

DOI: 10.1016/j.apcatb.2006.06.025

Google Scholar

[64] L. Ravichandran, K. Selvam, B. Krishnakumar, M. Swaminathan, Photovalorisation of Pentafluorobenzoic acid with Platinum doped TiO2, Journal of Hazardous Materials. (2009) doi: 10. 1016/j. jhazmat. 2009. 01. 048.

DOI: 10.1016/j.jhazmat.2009.01.048

Google Scholar

[65] Y. Zhiyong, M. Bensimon, V. Sarria, I. Stolitchnov, W. Jardim, D. Laub, E. Mielczarski, J. Mielczarski, L. Kiwi-Minsker, J. Kiwi, ZnSO4–TiO2 doped catalyst with higher activity in photocatalytic processes, Applied Catalysis B: Environmental. 76 (2007).

DOI: 10.1016/j.apcatb.2007.05.025

Google Scholar

[66] V.S.R.R. Pullabhotla, A. Rahman, S.B. Jonnalagadda, Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: An environmentally benign approach, Catalysis Communications. 10 (2009) 365–369.

DOI: 10.1016/j.catcom.2008.09.021

Google Scholar

[67] Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J. V. Weber, UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension, Journal of Photochemistry and Photobiology A: Chemistry. 183 (2006).

DOI: 10.1016/j.jphotochem.2006.03.025

Google Scholar

[68] C. Yumin, Photocatalytic degradation of MO by complex nanometer particles WO3/TiO2, Rare Metals. 25 6 (2006) 649-653.

DOI: 10.1016/s1001-0521(07)60007-2

Google Scholar

[69] M.H. Habibi, N. Talebian, J. Choi, The effect of annealing on photocatalytic properties of nanostructured titanium dioxide thin films, Dyes and Pigments. 73 (2007) 103-110.

DOI: 10.1016/j.dyepig.2005.10.016

Google Scholar

[70] J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. Gonzalez-Elipe, A. Fernandez, Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz, Applied Catalysis B: Environmental. 13 (1997).

DOI: 10.1016/s0926-3373(96)00107-5

Google Scholar

[71] C. -C. Chang, J. -Y. Chen, T. -L. Hsu, C. -K. Lin, C. -C. Chan, Photocatalytic properties of porous TiO2/Ag thin films, Thin Solid Films. 516 (2008) 1743–1747.

DOI: 10.1016/j.tsf.2007.05.033

Google Scholar

[72] I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, D. Labou, S.G. Neophytides, P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Applied Catalysis B: Environmental. 42 (2003) 187–201.

DOI: 10.1016/s0926-3373(02)00233-3

Google Scholar

[73] N. -S. Mojtaba, M.H. Habibi, Silver Doped TiO2 Nanostructure Composite Photocatalyst Film Synthesized by Sol-Gel Spin and Dip Coating Technique on Glass, International Journal of Photoenergy. (2008).

DOI: 10.1155/2008/628713

Google Scholar

[74] S.D. Sharma, K.K. Saini, C. Kant, C.P. Sharma, S.C. Jain, Photodegradation of dye pollutant under UV light by nano-catalyst doped titania thin films, Applied Catalysis B: Environmental. 84 (2008) 233–240.

DOI: 10.1016/j.apcatb.2008.04.017

Google Scholar

[75] C. Liang, C. Liu, F. Li, F. Wu, The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension, Chemical Engineering Journal. 147 2 (2008) 219-225.

DOI: 10.1016/j.cej.2008.07.004

Google Scholar

[76] O.T. Alaoui, Q.T. Nguyen, T. Rhlalou, Preparation and characterization of a new TiO2/SiO2 composite catalyst for photocatalytic degradation of indigo carmine, Environ Chem Lett. (2008) DOI 10. 1007/s10311-008-0154-1.

DOI: 10.1007/s10311-008-0154-1

Google Scholar

[77] S. Anandan, Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors, Dyes and Pigments. 76 (2008) 535-541.

DOI: 10.1016/j.dyepig.2006.09.014

Google Scholar

[78] T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant, Journal of Molecular Catalysis A: Chemical. 287 (2008).

DOI: 10.1016/j.molcata.2008.02.027

Google Scholar

[79] S. Song, L. Xu, Z. He, H. Ying, J. Chen, X. Xiao, B. Yan, Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst, Journal of Hazardous Materials. 152 (2008).

DOI: 10.1016/j.jhazmat.2007.08.004

Google Scholar

[80] A.B. Gambhire, B.R. Arbad, M.K. Lande, Photocatalytic activity and Characterization of the Nd-CexTi(1-x)O2 Derived by Sol-Gel Dip Coating Method, Bulletin of the Catalysis Society of India. 7 (2008) 28-40.

Google Scholar