Unexpected Constrained Twin Hierarchy in Equiatomic Ru-Based High Temperature Shape Memory Alloy Martensite

Article Preview

Abstract:

Among the different systems for high temperature shape memory alloys (SMA’s), equiatomic RuNb and RuTa alloys demonstrate both shape memory effect (SME) and MT temperatures above 800°C. Equiatomic compounds undergo two successive martensitic transformations, β (B2) → β’ (tetragonal) → β’’ (monoclinic), whereas out of stoechiometry alloys exhibit a single transition from cubic to tetragonal. In the case of two successive martensitic transformations, we expect to have a finer microstructure of the second martensite because it is supposed to develop inside the smallest twin elements of the former one. In equiatomic Ru-based alloys, if the first martensitic transformation is “normal”, the second one gives different unexpected microstructures with, for instance, twins with a thickness which is larger than the smallest spacing between twin variants of the first martensite. In fact, the reason for this unexpected hierarchy of the twins size is that the second martensitic transformation takes place in special conditions: geometrically, elastically and crystallographically constrained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

195-199

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Wu, J.L. Ma, A review of high-temperature shape memory alloys, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, SMST-2000, Pacific Grove, CA, USA, 30 April-5 May 2000, SMST Publication, 2000, 153-161.

DOI: 10.31399/asm.cp.smst2022fm03

Google Scholar

[2] R.W. Fonda, H.N. Jones and R.A. Vandermeer, The shape memory effect in equiatomic TaRu and NbRu alloys , Scripta Mat., 39(8) (1998), 1031-1037.

DOI: 10.1016/s1359-6462(98)00303-0

Google Scholar

[3] R.W. Fonda, H.N. Jones, Microstructure, crystallography and shape memory effect in equiatomic NbRu , Mat. Sci. Eng. A, 273-275 (1999) 275-279.

DOI: 10.1016/s0921-5093(99)00354-8

Google Scholar

[4] X. Gao et al., Phase transformation behaviour and microstructure observation of Nb-Ru high temperature shape memory alloy, Acta Metallurgica Sinica (English letters), 16(5) (2003) 401-406.

Google Scholar

[5] B. K. Das and D.S. Lieberman, Displacive transformations in near-equiatomic niobium-ruthenium alloys – I. Morphology and crystallography, Acta metallurgica., 23 (1975) 579-585.

DOI: 10.1016/0001-6160(75)90098-x

Google Scholar

[6] K. Chastaing et al., High-temperature shape memory alloys based on the RuNb system, Mat. Sci. Eng. A, 481-482 (2008), 702-706.

DOI: 10.1016/j.msea.2006.10.217

Google Scholar

[7] X. Gao et al., Microstructure, compression property and shape memory effect of equiatomic TaRu high temperature shape memory alloy, Journal of Materials Science and Technology, 20(1) (2004), 97-99.

Google Scholar

[8] A. Denquin, K. Chastaing, P. Vermaut, D. Caillard, J. Van Humbeeck, R. Portier, Shape recovery in RuNb-based high temperature shape memory alloys, Proceedings of the ICOMAT 2008 conference, Santa Fe, NM, USA, 28 June-4 July 2008, TMS publication.

DOI: 10.1002/9781118803592.ch67

Google Scholar

[9] A. Manzoni, K. Chastaing, A. Denquin, P. Vermaut, R. Portier, Phase transformation and shape memory effect in Ru-based high temperature shape memory alloys, Solid State Phenomena, 172-174 (2011) 43-48.

DOI: 10.4028/www.scientific.net/ssp.172-174.43

Google Scholar

[10] R. Portier and D. Gratias, Symmetry and phase transformation, J. Phys. Colloques 43 (1982) C4-17-C4-34. Available at http: /dx. doi. org/10. 1051/jphyscol: 1982402.

DOI: 10.1051/jphyscol:1982402

Google Scholar

[11] K. Chastaing, P. Vermaut, A. Denquin, D. Caillard and R. Portier, TEM study of the martensitic transformations in RuNb alloys, presented at the ICOMAT 2008 conference, Santa Fe, NM, USA, 28 June-4 July 2008; Edt G. B: Olson, D.S. Lieberman, A. Saxena; TMS; ISBN 978-0-87339-745-2, pp.465-471.

DOI: 10.1002/9781118803592.ch67

Google Scholar

[12] K. Chastaing, Ph. D Thesis, Study of Ru-based shape memory alloys for high temperature applications, University Pierre et Marie Curie, September (2007).

Google Scholar

[13] A. Manzoni, K. Chastaing, A. Denquin, P. Vermaut, R. Portier, Shape recovery in high temperature shape memory alloys based on the Ru-Nb and Ru-Ta systems, 8th European Symposium on Martensitic Transformations, 07-11 Sept. 2009, Prague; Edt P. Šittner, L. Heller and V. Paidar; EDP Sciences; (ISBN 978-2-7598-0480-1, 2009, www. esomat. org), [10. 1051/esomat/200905021].

DOI: 10.1051/esomat/200905021

Google Scholar

[14] A. Manzoni, Phd thesis, University Pierre and Marie Curie, Paris, France, (2010).

Google Scholar