Addressing Retained Austenite Stability in Advanced High Strength Steels

Article Preview

Abstract:

Advances in the development of new high strength steels have resulted in microstructures containing significant volume fractions of retained austenite. The transformation of retained austenite to martensite upon straining contributes towards improving the ductility. However, in order to gain from the above beneficial effect, the volume fraction, size, morphology and distribution of the retained austenite need to be controlled. In this regard, it is well known that carbon concentration in the retained austenite is responsible for its chemical stability, whereas its size and morphology determines its mechanical stability. Thus, to achieve the required mechanical properties, control of the processing parameters affecting the microstructure development is essential.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

212-216

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.F. Zackay, E.R. Parker, D. Fahr and R. Bush, Trans. Am. Soc. Met., 60 (1967) 252-259.

Google Scholar

[2] W.W. Gerberich, P.L. Hemmings, M.D. Merz, V.F. Zackay, Trans. Techn. Notes, 61 (1968) 843-47.

Google Scholar

[3] H.K.D.H. Bhadeshia, D.V. Edmonds, Metall. Trans., 10A (1979) 895-907.

Google Scholar

[4] Y. Sakuma, O.Matsumura, H. Takechi, Metall. Trans. A, 22A (1991) 489-98.

Google Scholar

[5] B.C. De Cooman, Curr. Opin. Solid State Mater. Sci., 8 (2004) 285-303.

Google Scholar

[6] S.K. Liu and J. Zhang, Metall. Trans. A, 21A (1990) 1517-25.

Google Scholar

[7] I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A, 35A (2004) 2331-2341.

Google Scholar

[8] P.J. Jacques, J. Ladrière, F. Delanny, Metall. Mater. Trans. A, 32A (2001) 2759-2768.

Google Scholar

[9] O. Matsumura, Y. Sakuma, Y. Ishii, J. Zhao, Iron Steel Inst. Jpn. Int., 32 (1992) 1110-16.

Google Scholar

[10] E. Pereloma, H. Belladi, L. Zhang, I. Timokhina, Metall. Mater. Trans. A, 43A (2012) 3958-3971.

Google Scholar

[11] G. Reisner, E. A. Werner, P. Kerschbaummaur, I. Papst, F.D. Fischer, I. Met., 49 (1997) 62-65.

Google Scholar

[12] M. De Meyer, D. Vanderschueren, B.C. De Cooman, Iron Steel Inst. Jpn. Int., 39 (1999) 813-22.

Google Scholar

[13] H.C. Chen, H. Era, and M. Shimizu, Metall. Trans. A, 20A (1989) 437-45.

Google Scholar

[14] V.T.T. Miihkinen and D.V. Edmonds, Mater. Sci. Technol., 3 (1987)422-30.

Google Scholar

[15] E.V. Pereloma, I.B. Timokhina, M.K. Miller, P.D. Hodgson, Acta Mater., 55 (2007) 2587-2598.

Google Scholar

[16] B.V. Kovacs, On the terminology and structure of ADI, Trans. AFS, 102 (1994) 417- 420.

Google Scholar

[17] B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Company Inc., 1978, p.555.

Google Scholar

[18] M.K. Miller, Atom Probe Tomography, Kluwer, Academic/Plenum Press, New York, 2000.

Google Scholar

[19] E. Pereloma, L. Zhang, K.-D. Liss, U. Garbe, J. Almer, T. Chambron, H. Beladi, and I. Timokhina, Solid State Phenomena, 172-174 (2011) 741-46.

DOI: 10.4028/www.scientific.net/ssp.172-174.741

Google Scholar

[20] J. H. Chung, J.B. Jeon, Y. W. Chang, Met. Mater. Int., Vol. 16, No. 4 (2010), p.533~541

Google Scholar

[21] I. Tsukatani, S. Hashimoto, T. Inoue, ISIJ International, 31 (1991) 992-1000.

Google Scholar

[22] M. Takahashi and H.K.D.H. Bhadeshia, Materials Transactions, JIM, 32 (1991) 689-696.

Google Scholar