The Microstructural Design and Control of Ultrahigh Strength-Ductility Martensitic Steels Based on a Novel Quenching-Partitioning-Tempering Process

Article Preview

Abstract:

Since Hsu in our group proposed a novel quenching-partitioning-tempering (Q-P-T) process in 2007, Q-P-T steels with ultrahigh strength and ultrahigh strength-ductility are greatly developed. In this paper a novel Q–P–T process based on design of microstructure is first introduced, including the comparison of Q-P-T process with a novel quenching-partitioning (Q&P) and traditional quenching and tempering (Q&T) process. The mechanical properties of Q-P-T steels at room temperature and elevated temperatures are then exhibited, including nanolath martensitic steel with the tensile strength of over 2000MPa and ultrahigh strength-ductility steel with the product of strength and elongation of over 30000MPa%. The mechanisms of ductility enhancement by retained austenite are finally summarized, including a new effect proposed by us, named DARA (dislocation absorption by retained austenite) effect after TRIP (transformation induced plasticity) effect and BMP (blocking microcrack propagation) effect proposed by other investigators 50 years ago.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

228-236

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. D. Wang, N. Zhong, Y. H. Rong and T. Y. Hsu, J Mater. Res. 24(2009) 260.

Google Scholar

[2] T. Y. Hsu, Mater. Sci. Forum, 561–565 (2007) 2283.

Google Scholar

[3] G. Krauss, Metall. Trans. B321 (2011) 205.

Google Scholar

[4] J. G. Speer, D. K. Matlock, B. C. de Cooman and J. G. Schroch, Acta Mater. 51 (2003) 2661.

Google Scholar

[5] J. G. Speer, D. K. Matlock, B. C. de Cooman and J. G. Schroch, Scri. Mater. 52 (2005) 83.

Google Scholar

[6] K. Zhang, W. Z. Xu, Z. H. Guo, Y. H. Rong, M. Q. Wang and H. Dong, Acta Metall. Sin. 47(2011) 489.

Google Scholar

[7] S. Zhou, K. Zhang, Y. Wang, J.F. Gu and Y.H. Rong, Metall. Mater. Trans. 43A (2012) 1026.

Google Scholar

[8] V.F. Zackay, E. R. Parker, D. Fahr, R. Busch, ASM Trans. 60 (1970) 252.

Google Scholar

[9] D. Webster, ASM Trans. 61(1968) 816.

Google Scholar

[10] K. Zhang, M. H. Zhang, Z. H. Guo, N. L. Chen, Y. H. Rong, Mater. Sci. Eng. A 528 (2011) 8486.

Google Scholar

[12] M. Rhee, H. M. Zbib, J. P. Hirth, H. Huang, T. De la Rubia, Modell. Simul. Mater. Sci. Eng. 6 (1998) 467.

Google Scholar

[13] T. E. Mitchell, W. A. Spitzig, Acta Metall. 13(1965) 1169.

Google Scholar

[14] J. Wang, R. G. Hoagland, X. Y. Liu, A. Misra, Acta Mater. 59(2011) 3164.

Google Scholar

[15] J. Wang, A. Misra, Curr. Opin. Solid State Mater. Sci. 15 (2011) 20.

Google Scholar

[16] Y. H. Rong, Int. Heat Treat. Surf. Eng. 5(2011)145.

Google Scholar

[17] Y. Wang, K. Zhang, Z.H. Guo, N.L. Chen, Y.H. Rong, Mater. Sci. Eng. A 552 (2012) 288.

Google Scholar