The Shape Memory Effect in Melt Spun Fe-15Mn-5Si-9Cr-5Ni Alloys

Article Preview

Abstract:

At room temperature, Fe-15Mn-5Si-9Cr-5Ni alloys are usually austenitic and the application of a stress induces a reversible martensitic transformation leading to a shape memory effect (SME). However, when a ribbon of this material is obtained by melt-spinning, the rapid solidification stabilizes a high-temperature ferritic phase. The goals of this work were to find the appropriate heat treatment in order to recover the equilibrium austenitic phase, characterize the ribbon form of this material and evaluate its shape memory behaviour. We found that annealing at 1050°C for 60 min, under a protective argon atmosphere, followed by a water quenching stabilizes the austenite to room temperature. The yield stress, measured by tensile tests, is 250 MPa. Shape-memory tests show that a strain recovery of 55% can be obtained, which is enough for certain applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

247-251

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sato A., Chishima E., Soma K., Mori T. Shape memory effect in g↔e transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall. 30 (1982) 1177-1183.

DOI: 10.1016/0001-6160(82)90011-6

Google Scholar

[2] H. Otsuka, M. Murakami, S. Matsuda, in: M. Doyama, S. Somiya, R. Chang (Eds. ), Proceedings of the MRS International Meeting on Advanced Materials, vol. 9, Materials Research Society (1988) 451–456.

Google Scholar

[3] Kajiwara S. Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater. Sci. Eng. A 67 (1999) 273–275.

DOI: 10.1016/s0921-5093(99)00290-7

Google Scholar

[4] Stanford N., Dunne D.P. Effect of NbC and TiC precipitation on shape memory in an iron-based alloy. J. Mater. Sci. 41 (2006) 4883-4891.

DOI: 10.1007/s10853-006-0050-7

Google Scholar

[5] Druker A., Sobrero C., Brokmeier H. -G., Malarría J., Bolmaro R. Texture evolution during thermomech. treatments in Fe-Mn-Si shape memory alloys. Mater. Sci. Eng. A 481–482 (2008) 578–581.

DOI: 10.1016/j.msea.2006.10.214

Google Scholar

[6] Herrera C., de Lima N.B., Kliauga A.M., Padilha A.F. Microstructure and texture of duplex stainless steel after melt-spinning processing. Mater. Charact. 59 (2008) 79–83.

DOI: 10.1016/j.matchar.2006.10.022

Google Scholar

[7] Donner P., Hornbogen E., Sade M. Shape memory effects in melt-spun Fe-Mn-Si alloys. J. Mater. Sci. Lett. 8 (1989) 37-40.

DOI: 10.1007/bf00720244

Google Scholar

[8] Valeanu M., Filoti G., Kuncser V., Tolea F., Popescu B., Galatanu A., Schinteie G., Jianu A.D., Mitelea I., Schinle D., Craciunescu C.M. Shape memory and associated properties in Fe–Mn–Si-based ribbons produced by melt-spinning. J. Mag. Magnetic Mater. 320 (2008).

DOI: 10.1016/j.jmmm.2008.02.105

Google Scholar

[9] Druker A., Perotti A., Baruj A., Malarría J. Heat Treatments of Fe-Mn-Si Based Alloys: Mechanical Properties and Related Shape Memory Phenomena. J. ASTM Int. 8, No. 4 (2011) Paper ID JAI103399. Available online at www. astm. org.

DOI: 10.1520/jai103399

Google Scholar

[10] Maji B., Madangopal K, Rama Rao V. V. The microstructure of an Fe-Mn-Si-Cr-Ni stainless steel shape memory alloy. Met. Mater. Trans. A 34a (2003) 1029-1042.

DOI: 10.1007/s11661-003-0124-y

Google Scholar

[11] Jiang B.H., Sun L., Li R., Hsu T.Y. Influence of austenite grain size on g→e martensitic transformation temperature in Fe-Mn-Si-Cr. Scr. Met. et Mater. 33 (1995) 63-68.

DOI: 10.1016/0956-716x(95)00081-6

Google Scholar