In Situ Optical Microscope Examinations of the ε↔γ Transformations in FeMn(Cr) Austenitic Steels during Thermal Cycling

Article Preview

Abstract:

A group of austenitic steels exhibit high deformability and strength due to TRansformation Induced Plasticity (TRIP) and/or TWinning Induced Plasticity (TWIP). The phase transformations of the TRIP and TWIP steels have been examined in details in many FeMnX alloy systems (X: Ni, Al, Si). However, less attention was given to the FeMn(Cr) alloys. The γ ↔ ε transformations in the austenitic FeMn(Cr) alloys have been examined during heat cycling by in situ optical microscopy and DSC measurements.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

257-261

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bluma, T. Höpfner, G. Rudolph, P. Lindner, S. Beutel, B. Hitzmann, T. Scheper, Adaption of in-situ microscopy for crystallization process, J. Cryt. Growth 311 (2009) 4193-4198

DOI: 10.1016/j.jcrysgro.2009.06.057

Google Scholar

[2] S. Gangireddy, S. N. Karlsdottir, S. J. Norton, J. C. Tucker, J. W. Halloran, In situ microscopy observation of liquid flow, zirconia growth, and CO bubble formation during high temperature oxidation of zirconium diboride-silicon carbide, J. Eur. Ceram. Soc. 30 (2010) 2365-2374

DOI: 10.1016/j.jeurceramsoc.2010.01.034

Google Scholar

[3] M.-Y. Lee, G. M. Parkinson, Growth rates of gibbsite single crystals determined using in situ optical microscopy, J. Cryst Growth 198/199 (1999) 270-274

DOI: 10.1016/s0022-0248(98)01187-7

Google Scholar

[4] L. C. Brinson, I. Schmidt, R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids 52 (2004) 1549-1571

DOI: 10.1016/j.jmps.2004.01.001

Google Scholar

[5] Y. Lü, B. Hutchinson, D. A. Molodov, G. Gottstein, Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy, Acta Mat. 58 (2010) 3079-3090

DOI: 10.1016/j.actamat.2010.01.045

Google Scholar

[6] F. Tranta, A. Weiss, The effects of heat treatment and deformation on the martensitic transformation of FeMn(Cr) steels, Mat. Sci. Forum 729 (2013) (in press)

DOI: 10.4028/www.scientific.net/msf.729.132

Google Scholar

[7] http://www.matsci.uni-miskolc.hu/new/ (Downloads/Videos)

Google Scholar

[8] A. Baruj, S. Cotes, M. Sade, A. Fernández Guillermet, Effects of thermal cycling on the fcc/hcp martensitic transformation temperatures in Fe-Mn alloys, Z. Metallkd. 87 (1996) 765

DOI: 10.1515/ijmr-1996-871004

Google Scholar

[9] A. Baruj, H. E. Troiani, M .Sade, A. Fernández. Guillermet, Effects of thermal cycling on the fcc-hcp martensitic transformation temperatures in the Fe-Mn system II. Transmission electron microscopy study of the microstructural changes, Phil. Mag. A Vol. 80 No. 11(2000) 2537-2548

DOI: 10.1080/01418610008216490

Google Scholar

[10] P. Marinelli, A. Fernández Guillermet, M. Sade, The enthalpy change of the hcp → fcc martensitic transformation in Fe-Mn-Co alloys: composition dependence and thermal cycling effects, mat.Sci. Eng. A 373 (2004) 1-9

DOI: 10.1016/j.msea.2003.05.006

Google Scholar

[11] A. Baruj, A. Fernández Guillermet, M. Sade, Effects of thermal cycling and plastic deformation upon the Gibbs energy barriers to martensitic transformation in Fe-Mn and Fe-Mn-Co alloys, At.Sci. Eng. A 273-275 (1999) 507-511

DOI: 10.1016/s0921-5093(99)00389-5

Google Scholar