Effect of Cold-Rolling Rate on Texture in Ti-Mo-Al-Zr Shape Memory Alloy

Article Preview

Abstract:

Effect of rolling rate on texure of Ti-Mo-Al-Zr shape memory alloy was investigated using X-ray diffraction pole figure measurement and electron backscattering pattern (EBSP) analysis to optimize the thermomechanical processing. Ti-Mo-Al-Zr alloy is a candidate Ni-free shape memory alloy to replace Ti-Ni alloy in medical applications. The alloy was single phase of β before rolling and then α''-martensite was induced during the cold-rolling. Unlike the recrystallization texture in Ti-Nb alloy system, {110}ββ recrystallization texture of β-phase was developed by the solution-treatment especially in the specimens with the reduction rate higher than 90%. This texture has never been observed in Ti-Nb based alloys and can exhibit a larger recovery strain in both tension and compression.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

262-266

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Duerig, A. Pelton and D. Stöckel, Mater. Sci. Eng. A, 273-275, 1999, 149.

Google Scholar

[2] J. V. Humbeeck, Mater. Sci. Eng. A, 273-275, 1999, 134.

Google Scholar

[3] S. Miyazaki, V. H. No, K. Kitamura, A. Khantachawana and H. Hosoda, Int. J. Plasticity, 16, 2000, 1135.

Google Scholar

[4] A. Yamamoto, Y. Kohyama, H. Hosoda, S. Miyazaki and T. Hanawa, Mater. Trans, 48, 2007, 361.

Google Scholar

[5] S. Miyazaki, H. Y. Kim and H. Hosoda, Mater. Sci. Eng. A, 438/440, 2006, 18.

Google Scholar

[6] Y. Zhou and D. Luo, Mater. Charact, 62, 2011, 931.

Google Scholar

[7] S-H. Lee, M. Todai, M. Tane and K. Hagihara, J. Mech. Behav. Biomed, 14, 2012, 48.

Google Scholar

[8] T. Inamura, Y. Kinoshita, J. I. Kim, H. Y. Kim, H. Hosoda, K. Wakashima and S. Miyazaki, Mater. Sci. Eng. A, 438-440, 2006, 865.

Google Scholar

[9] H. Hosoda, Y. Kinoshita, Y. Fukui, T. Inamura, K. Wakashima, H. Y. Kim and S. Miyazaki, Mater. Sci. Eng. A, 438-440, 2006, 870.

Google Scholar

[10] T. Inamura, Y. Fukui, H. Hosoda, K. Wakashima, S. Miyazaki, Mater. Trans, 45, 2004, 1083.

Google Scholar

[11] W. F. Ho, C. P. Ju, J. H. ChernLin, Biomaterials, 20, 1999, 2115.

Google Scholar

[12] H. Y. Kim, Y. Ohmatsu, J. I. Kim, H. Hosoda and S. Miyazaki, Mater. Trans. 45, 2004, 1090.

Google Scholar

[13] H. Sasano, T. Suzuki, Proc. Intel. Conf. on Martensitic Transformation, 1990, 1667.

Google Scholar

[14] X. H. Min, S. Emura, L. Zhang and K. Tsuzaki, Mater. Sci. Eng. A, 497, 2008, 74.

Google Scholar

[15] I. Kubota, T. Inamura, K. Wakashima, H. Hosoda and S. Miyazaki, Proc. Int. Conf. SMST, 2008, 533.

Google Scholar

[16] T. Inamura, R. Shimizu, H. Hosoda and S. Miyazaki, Mater. Sci. Forum, 706-709, 2012, 1899.

Google Scholar

[17] T. Inamura, H. Hosoda, K. Wakashima, S. Miyazaki, Mater. Trans, 46, 2005, 1597.

Google Scholar

[18] F. J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, second ed., Elsevier, Oxford, (2004).

Google Scholar