Recent Progress and Future Perspectives in Magnetic and Metamagnetic Shape-Memory Heusler Alloys

Article Preview

Abstract:

Magnetic shape-memory properties refer to the ability of certain materials to show strong response in strain to an applied magnetic field. This strain is caused by either inducing the martensitic transition or rearranging martensitic variants. In the first, case a superelastic effect is possible, while in the second, the system is able to show the shape-memory effect. The complex behaviour displayed by these materials is mainly a consequence of a strong interplay between magnetism and structure which is driven by a martensitic transition. This interplay is the source of many other observed effects such as giant magneto-resistance, exchange bias and magnetocaloric effects. In this paper, we will overview the present state of the art, discuss present challenges and outline some future perspectives in the field.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

391-399

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shape memory materials (ed. by K. Otsuka and C. M. Wayman, Cambridge Univ. Press, (1998).

Google Scholar

[2] K. Ullakko et al., Appl. Phys. Lett. 69, 1966-1968 (1996).

Google Scholar

[3] H. H. Libermann and C. D. Graham, Acta metall. 25, 715 (1976).

Google Scholar

[4] V. A. Chernenko and V. A. Lovo'v, Mater. Sci. Forum 583, 1-20 (2008).

Google Scholar

[5] S. J. Murray et al., Appl. Phys. Lett. 77, 886-888 (2000).

Google Scholar

[6] A. Sozinov et al., Appl. Phys. Lett. 80, 1746-1748 (2002).

Google Scholar

[7] A. Fujita et al., Appl. Phys. Lett. 77, 3054 (2000).

Google Scholar

[8] K. Oikawa et al., Appl. Phys. Lett. 79, 3290 (2001).

Google Scholar

[9] H. Morito et al., Appl. Phys. Lett. 83, 4993 (2003).

Google Scholar

[10] R. D. James and M. Wuttig, Philos. Mag. 77, 1273 (1998).

Google Scholar

[11] T. Kakeshita et al., Appl. Phys. Lett. 77, 1502 (2000).

Google Scholar

[12] W. M. Zhou et al., Appl. Phys. Lett. 82, 760 (2003).

Google Scholar

[13] A. N. Lavrov et al., Nature 418, 385 (2002).

Google Scholar

[14] R. Kainuma et al., Nature 439, 957 (2006).

Google Scholar

[15] T. Krenke et al., Phys. Rev. B 75, 104414 (2007).

Google Scholar

[16] B. Ingale et al., J. Appl. Phys. 105, 023903 (2009).

Google Scholar

[17] A. Planes et al., J. Phys. Condens. Matter 21, 233201 (2009), and references therein.

Google Scholar

[18] S. Giri et al., J. Phys. Condens. Matter 23, 073201 (2011).

Google Scholar

[19] K. R. A. Ziebeck and K. U. Neuman, Magnetic properties of Metals, Landolt-Bornstein III/vol 32, Sup. Vol. 19, subvol. C, Berlin: Springer-Verlag (2001).

Google Scholar

[20] T. Graf et al, Prog. Sol. Stat. Chem. 39, 1-50 (2011).

Google Scholar

[21] V. A. Chernenko, Scr. mater. 40, 523 (1999).

Google Scholar

[22] X. Jin et al., J. Appl. Phys. 91, 8222 (2002).

Google Scholar

[23] Y. Sutou et al., Appl. Phys. Lett. 85, 4358 (2004).

Google Scholar

[24] P. Entel, et al., J. Phys D 39, 865 (2006).

Google Scholar

[25] T. Kanomata et al., J. Mag. Mag. Mater. 65, 76 (1987).

Google Scholar

[26] S. Kyuyi et al., Physica B 237-238, 523 (1997).

Google Scholar

[27] E. Şaşioğlu et al., Phys. Rev. B 71, 214412 (2005).

Google Scholar

[28] M. Siewert et al., Appl. Phys. Lett. 99, 191904 (2011).

Google Scholar

[29] B. Himmetoglu et al., J. Phys. Condens. Matter 24, 185501 (2012).

Google Scholar

[30] S. Kaufmann et al., Phys. Rev. Lett. 104, 145702 (2010).

Google Scholar

[31] E. Şaşioğlu et al., Phys. Rev. B 70, 024427 (2004). E. Sasioglu et al., Phys. Rev. B 71, 214412 (2005).

Google Scholar

[32] V. D. Buchelnikov, P. Entel, V. Taskaev, et al., Phys. Rev. B 78, 184427 (2008).

Google Scholar

[33] Y. Chieda et al., J. Alloys and Compd. 486, 51-54 (2009).

Google Scholar

[34] S. Aksoy et al., Phys. Rev. B 79, 212401 (2009).

Google Scholar

[35] R. Y. Umetsu et al., Appl. Phys. Lett. 93, 042509 (2008).

Google Scholar

[36] V. V. Khovaylo et al., Phys. Rev. B 80, 144409 (2009).

Google Scholar

[37] L. H. Bennett et al., J. Alloys and Compd. 525, 34 (2012).

Google Scholar

[38] R. Y. Umetsu et al., J. Phys. Condens. Matter 23, 326001 (2001).

Google Scholar

[39] K. R. A. Ziebeck and P. J. Webster, J. Phys. F: Metal Phys. 5, 1756 (1975).

Google Scholar

[40] V. Sáànchez-Alarcos et al., Acta mater. 55, 3883(2007).

Google Scholar

[41] V. Recarte et al., Acta mater. 60, 1937 (2012).

Google Scholar

[42] M. Ye et al., Phys. Rev. Lett. 104, 176401 (2010).

Google Scholar

[43] A. Ayuela et al., J. Phys. Condens. Matter. 14, 5325 (2002).

Google Scholar

[44] K. R. Priolkar et al., EPL 94, 38006 (2011).

Google Scholar

[45] P. A. Bhobe et al., Phys. Rev. B, 74, 224425 (2006).

Google Scholar

[46] C. P. Opeil et al., Phys. Rev. Lett. 100, 165703 (2008).

Google Scholar

[47] Y. Lee et al., Phys. Rev. B 66, 054424 (2002).

Google Scholar

[48] M. A. Uitttewaal et al., Phys. Rev. Lett. 102, 035720 (2009).

Google Scholar

[49] T. D. Haynes et al., New J. Phys. 14, 035020 (2012).

Google Scholar

[50] T. Krenke et al., J. Mag. Mag. Mater. 310, 2788 (2007).

Google Scholar

[51] T. Krenke et al., Phys. Rev. B 72, 014412 (2005).

Google Scholar

[52] A. Planes and L. Mañosa, Solid Stat. Phys. 55, 159 (2001).

Google Scholar

[53] F. Albertini et al., J. Appl. Phys. 89, 5614-5617 (2001).

Google Scholar

[54] F. Albertini et al., Appl. Phys. Lett. 81, 4032-4034 (2002).

Google Scholar

[55] S. Kaufmann et al., New J. Phys., 13, 053029 (2011).

Google Scholar

[56] H. E. Karaca et al., Adv. Func. Mater., 19, 1 (2009).

Google Scholar

[57] M. Chmielus et al., Nature Mater. 8, 863 (2009).

Google Scholar

[58] D. C. Dunand and P. Müllner, Adv. Mater. 23, 216 (2011).

Google Scholar

[59] M. Khan et al., Appl. Phys. Lett. 91, 072510 (2007).

Google Scholar

[60] Z. Li et al., Appl. Phys. Lett. 91, 112505 (2007).

Google Scholar

[61] K. A. Sandemann, Scr. mater. , in press, 67, 566 (2012).

Google Scholar

[62] T. Krenke et al., Nature Mater. 4, 450 (2005).

Google Scholar

[63] I. Titov et al., J. Appl. Phys. , to be published112, 073914 (2012).

Google Scholar

[64] L. Mañosa et al., Nature Mater. 9, 478 (200109).

Google Scholar

[65] L. Mañosa et al., Appl. Phys. Lett. 92, 012515 (2008).

Google Scholar

[66] V. Srivastava et al., Appl. Phys. Lett. 97, 014101 (2010).

Google Scholar

[67] P. Entel et al., J. Alloys Compd. 2012 (doi: 10. 1016/j. allcom. 2012. 03. 005).

Google Scholar

[68] H. -B. Luo et al., Phys. Rev. B 86, 024427 (2012).

Google Scholar