3D Energy Analysis of Magnetic-Field Induced Martensite Reorientation in Magnetic Shape Memory Alloys

Article Preview

Abstract:

This paper explains the magnetic-field induced martensite reorientation in Ferromagnetic Shape Memory Alloys (FSMA) through a simple energy analysis from which the role of the martensite’s magnetic anisotropy is emphasized. In particularly, with a three-dimensional (3D) energy analysis, we study the switching between the three tetragonal martensite variants driven by a rotating magnetic field (with a constant magnitude) and a non-rotating magnetic field (with a fixed direction but varying magnitudes). Finally, a simple planar phase diagram is proposed to describe the martensite reorientation in general 3D loadings.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

400-404

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) 1966−(1968).

DOI: 10.1063/1.117637

Google Scholar

[2] R. Tickle, R.D. James, T. Shield, M. Wuttig, V.V. Kokorin, Ferromagnetic shape memory in the NiMnGa system, IEEE Trans. Magn. 35 (1999) 4301−4310.

DOI: 10.1109/20.799080

Google Scholar

[3] S.J. Murray, M. Marioni, S.M. Allen, R.C. O'Handley, T.A. Lograsso, 6% magnetic-field induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga, Appl. Phys. Lett. 77 (2000) 886−888.

DOI: 10.1063/1.1306635

Google Scholar

[4] L. Straka, O. Heczko, Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields, J. Magn. Magn. Mater. 290−291 (2005) 829−831.

DOI: 10.1016/j.jmmm.2004.11.375

Google Scholar

[5] M.A. Marioni, R.C. O'Handley, S.M. Allen, Pulsed magnetic field-induced actuation of Ni–Mn–Ga single crystals, Appl. Phys. Lett. 83 (2003) 3966−3968.

DOI: 10.1063/1.1626021

Google Scholar

[6] R. Techapiesancharoenkij, J. Kostamo, S.M. Allen, R.C. O'Handley, Frequency response of acoustic-assisted Ni–Mn–Ga ferromagnetic-shape-memory-alloy actuator, J. Appl. Phys. 105 (2009) 093923.

DOI: 10.1063/1.3125307

Google Scholar

[7] Y.J. He, X. Chen, Z. Moumni, Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys, J. Appl. Phys. 110 (2011) 063905.

DOI: 10.1063/1.3636366

Google Scholar

[8] Y.J. He, X. Chen, Z. Moumni, Reversible-strain criteria of ferromagnetic shape memory alloys under cyclic 3D magneto-mechanical loadings, J. Appl. Phys. 112 (2012) 033902.

DOI: 10.1063/1.4739711

Google Scholar

[9] P. Müllner, V.A. Chernenko, M. Wollgarten, G. Kostorz, Large cyclic deformation of a Ni-Mn-Ga shape memory alloy induced by magnetic fields, J. Appl. Phys. 92 (2002) 6708−6713.

DOI: 10.1063/1.1513875

Google Scholar

[10] C.P. Sasso, V.A. L'vov, V.A. Chernenko, J.M. Barandiaran, M. Pasquale, Y. Kono, Transformation of twinned Ni52. 0Mn24. 4Ga23. 6 martensite in a rotating magnetic field: Theory and experiment, Phys. Rev. B 81 (2010) 224428.

Google Scholar

[11] V.I. Levitas, D.L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations: II. Multivariant phase transformations and stress space analysis, Phys. Rev. B 66 (2002) 134207.

DOI: 10.1103/physrevb.66.134207

Google Scholar