[1]
K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) 1966−(1968).
DOI: 10.1063/1.117637
Google Scholar
[2]
R. Tickle, R.D. James, T. Shield, M. Wuttig, V.V. Kokorin, Ferromagnetic shape memory in the NiMnGa system, IEEE Trans. Magn. 35 (1999) 4301−4310.
DOI: 10.1109/20.799080
Google Scholar
[3]
S.J. Murray, M. Marioni, S.M. Allen, R.C. O'Handley, T.A. Lograsso, 6% magnetic-field induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga, Appl. Phys. Lett. 77 (2000) 886−888.
DOI: 10.1063/1.1306635
Google Scholar
[4]
O. Heczko, A. Sozinov, K. Ullakko, Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy, IEEE Trans. Magn. 36 (2000) 3266−3268.
DOI: 10.1109/20.908764
Google Scholar
[5]
A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Appl. Phys. Lett. 80 (2002) 1746−1748.
DOI: 10.1063/1.1458075
Google Scholar
[6]
M.A. Marioni, R.C. O'Handley, S.M. Allen, Pulsed magnetic field-induced actuation of Ni–Mn–Ga single crystals, Appl. Phys. Lett. 83 (2003) 3966−3968.
DOI: 10.1063/1.1626021
Google Scholar
[7]
P. Müllner, V.A. Chernenko, G. Kostorz, A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity), J. Magn. Magn. Mater. 267 (2003) 325−334.
DOI: 10.1016/s0304-8853(03)00400-1
Google Scholar
[8]
L. Straka, O. Heczko, Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields, J. Magn. Magn. Mater. 290−291 (2005) 829−831.
DOI: 10.1016/j.jmmm.2004.11.375
Google Scholar
[9]
H.E. Karaca, I. Karaman, B. Basaran, Y.I. Chumlyakov, H.J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals, Acta. Mater. 54 (2006) 233−245.
DOI: 10.1016/j.actamat.2005.09.004
Google Scholar
[10]
P. Müllner, V.A. Chernenko, M. Wollgarten, G. Kostorz, Large cyclic deformation of a Ni-Mn-Ga shape memory alloy induced by magnetic fields, J. Appl. Phys. 92 (2002) 6708−6713.
DOI: 10.1063/1.1513875
Google Scholar
[11]
Y.J. He, X. Chen, Z. Moumni, Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys, J. Appl. Phys. 110 (2011) 063905.
DOI: 10.1063/1.3636366
Google Scholar
[12]
Y.J. He, X. Chen, Z. Moumni, Reversible-strain criteria of ferromagnetic shape memory alloys under cyclic 3D magneto-mechanical loadings, J. Appl. Phys. 112 (2012) 033902.
DOI: 10.1063/1.4739711
Google Scholar
[13]
N.I. Glavatska, A.A. Rudenko, I.N. Glavatskiy, V.A. L'vov, Statistical model of magnetostrain effect in martensite, J. Magn. Magn. Mater. 265 (2003) 142−151.
DOI: 10.1016/s0304-8853(03)00242-7
Google Scholar
[14]
L. Hirsinger, C. Lexcellent, Modelling detwinning of martensite platelets under magnetic and (or) stress actions on Ni–Mn–Ga alloys, J. Magn. Magn. Mater. 254–255 (2003) 275−277.
DOI: 10.1016/s0304-8853(02)00773-4
Google Scholar
[15]
B. Kiefer, D.C. Lagoudas, Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading, J. Intell. Mater. Syst. Struct. 20 (2009) 143−170.
DOI: 10.1177/1045389x07086688
Google Scholar
[16]
L. Straka, O. Heczko, Superelastic response of Ni–Mn–Ga martensite in magnetic fields and a simple Model, IEEE Trans. Magn. 39 (2003) 3402−3404.
DOI: 10.1109/tmag.2003.816164
Google Scholar