Microstructural Studies of NiCoMnIn Magnetic Shape Memory Ribbons

Article Preview

Abstract:

In present paper two ribbons of the Ni44Co6Mn36In14 (at.%) were prepared under different melt-spinning technique conditions. Microstructure of the ribbons was studied by scanning electron microscopy (SEM). Depending on the liquid ejection overpressure two types of ribbons microstructures were observed. Ribbon T1 for which ejection overpressure was 1.5 bar showed typical melt-spun ribbon microstructure consisting of a top layer of small equi-axial grains and columnar grains below. For T2 ribbon (ejection overpressure 0.2 bar) only a small fraction of the columnar grains were observed. Structure analysis of the ribbons performed by XRD showed that at room temperature both ribbons have B2 parent phase superstructure. No gamma phase precipitates were observed. In order to determine the orientation of the grains the EBSD technique was applied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

436-440

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85 (2004) 4358.

DOI: 10.1063/1.1808879

Google Scholar

[2] K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, Appl. Phys. Lett. 89 (2006) 182510.

DOI: 10.1063/1.2374868

Google Scholar

[3] V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan, S.B. Roy, Appl. Phys. Lett. 89 (2006) 222509.

DOI: 10.1063/1.2399365

Google Scholar

[4] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439 (2006) 957.

DOI: 10.1038/nature04493

Google Scholar

[5] K. Oikawa, Y. Imano, V.A. Chernenko, F. Luo, T. Omori, Y. Sutou, R. Kainuma, T. Kanomata, K. Ishida: Mat. Trans., Vol. 46, No. 3 (2005), pp.734-737.

DOI: 10.2320/matertrans.46.734

Google Scholar

[6] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett., Vol. 80 (2002) 1746-1748.

DOI: 10.1063/1.1458075

Google Scholar

[7] A.A. Likchachev, K. Ullakko: Phys. Lett. A Vol. 275 (2000) 142.

Google Scholar

[8] M. Pötschke, U. Gaitzsch, S. Roth, B. Rellinghause, L. Schultz, J. Magn. Magn. Mater. 316 (2007) 383.

Google Scholar

[9] Z.H. Liu, X.X. Zhang, M. Zhang, X.F. Dai, H.N. Hu, J.L. Chen, G.H. Wu: Phys. Lett. A 329 (2004) 214.

Google Scholar

[10] A. Böhm, S. Roth, G. Naumann, W.G. Drossel, R. Neugebauer: Mater. Sci. Eng. A 481-482 (2008) 266.

Google Scholar

[11] S. Besseghini, E. Villa, F. Passaretti, M. Pini, F. Bonfanti: Mat. Sci. Eng. A 378 (2004) 415.

Google Scholar

[12] L. Bin, W. Hua-Bin, L. Yan, L. Ji-Xuan, W.H. Lei: Trans. Nonferrous Met. Soc. China 16 (2006) 843.

Google Scholar

[13] H. Morawiec, T. Goryczka, A. Drdzeń, J. Lelątko, K. Prusik, Solid State Phenomena, 154 (2009) 133.

DOI: 10.4028/www.scientific.net/ssp.154.133

Google Scholar

[14] O. Gutfleisch, A. Yan, K. -H. Müller, J. Appl. Phys., 97 (2005) 10M305.

Google Scholar