[1]
V.K. Pecharsky, A.P. Horn, K.A. Gschneidner Jr., R. Rink, Massive Magnetic-Field-Induced Structural Transformation in Gd5Ge4 and the Nature of the Giant Magnetocaloric Effect, Phys. Rev. Lett. 91 (2003) 197204/1–197204/4.
Google Scholar
[2]
V.K. Pecharsky, K.A. Gschneidner Jr., Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ~ 20 to ~ 290 K, Appl. Phys. Lett. 70 (1997) 3299-3301.
DOI: 10.1063/1.119206
Google Scholar
[3]
O. Tegus, E. Bruck, K.H.J. Buschow, F.R. de Boer, Transition-Metal-Based Magnetic Refrigerants for Room-Temperature Applications, Nature 415 (2002) 150-152.
DOI: 10.1038/415150a
Google Scholar
[4]
S. Gama, A.A. Coelho, A.A. Campos, A.M.G. Cavalho, F.C.G. Gandra, P.J.V. Ranke and N.A.D. Oliveira, Pressure-induced colossal magnetocaloric effect in MnAs, Phys. Rev. Lett. 93 (2004) 237202/1–237202/4.
DOI: 10.1103/physrevlett.93.237202
Google Scholar
[5]
A.A. Cherechukin, I.E. Dikshtein, D.I. Ermakov, et al., Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni–Mn–Fe–Ga alloy, Phys. Lett. A 291 (2001) 175–183.
DOI: 10.1016/s0375-9601(01)00688-0
Google Scholar
[6]
G.H. Wu, W.H. Wang, J.L. Chen, et al., Magnetic properties and shape memory of Fe-doped Ni52Mn24Ga24 single crystals, Appl. Phys. Lett. 80 (2002) 634.
DOI: 10.1063/1.1447003
Google Scholar
[7]
Z. H. Liu, M. Zhang, W. Q. Wang, et al., Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa, J. Appl. Phys. 92 (2002) 5006.
Google Scholar
[8]
A.A. Cherechukin, V.V. Khovailo, R.V. Kposov, et al., Training of the Ni–Mn–Fe–Ga ferromagnetic shape-memory alloys due cycling in high magnetic field, J. Magn. Magn. Mater. 258–259 (2003) 523-525.
DOI: 10.1016/s0304-8853(02)01064-8
Google Scholar
[9]
V. Buchelnikov, I. Dikshtein, R. Grechishkin, et al., Ultrasound-induced martensitic transition in ferromagnetic Ni2. 15Mn0. 81Fe0. 04Ga shape memory alloy, J. Magn. Magn. Mater. 272–276 (2004) 2025-(2026).
DOI: 10.1016/j.jmmm.2003.12.778
Google Scholar
[10]
M. Khan, I. Dubenko, S. Stadler, and N. Ali, Magnetic and structural phase transitions in Heusler type alloys Ni2MnGa1−xInx, J. Phys.: Condens. Matter. 16 (2004) 5259.
DOI: 10.1088/0953-8984/16/29/017
Google Scholar
[11]
M. Khan, I. Dubenko, S. Stadler, and Naushad Ali, The structural and magnetic properties of Ni2Mn1−xMxGa (M=Co, Cu), J. Appl. Phys. 97 (2005) 10M304.
DOI: 10.1063/1.1847131
Google Scholar
[12]
S. Stadler, M. Khan, M. Gomes, et al., Magnetocaloric properties of Ni2Mn1−xCuxGa, Appl. Phys. Lett. 88 (2006) 192511.
DOI: 10.1063/1.2202751
Google Scholar
[13]
V. Khovaylo, V. Koledov, V. Shavrov, et al., Compositional dependence of magnetic entropy change in Ni2+xMn1-xGa with coupled magnetostructural phase transition, Proc. Second IIF – IIR Intern. Conf. Magnetic Refrigeration at Room Temperature (2007).
Google Scholar
[14]
J. Duana, P. Huanga, Hu Zhang, et. al., Negative and positive magnetocaloric effect in Ni–Fe–Mn–Ga alloy, J. Magn. and Magn. Materials, 309 (2007) 96-99.
Google Scholar
[15]
Y.I. Spichkin, et al., Direct measurements of the magnetocaloric effect: realization and results Proc. 3rd IIF-IIR Intern. Conf. Magnetic Refrigeration at Room Temperature, (2009) 173.
Google Scholar
[16]
V.V. Khovaylo, et al., Adiabatic temperature change at first-order magnetic phase transitions: Ni2. 19Mn0. 81Ga as a case study, Phys. Rev. B 78 (2008) 060403(R).
Google Scholar