A Miniature Energy Harvesting Device Using Martensite Variant Reorientation

Article Preview

Abstract:

This paper presents a miniature energy harvesting device that makes use of stress-induced cyclic martensite variant reorientation in a Ni-Mn-Ga single crystal of 0.3x2x2 mm³ size. The stress- and magnetic field-induced reorientation is investigated for single crystalline Ni50.2Mn28.4Ga21.4 specimens of 0.3 mm thickness that are cut along the (100) direction and subjected to uniaxial compressive loading. A demonstrator is presented consisting of a FSMA specimen placed in the gap of a magnetic circuit to guide and enhance the field of biasing permanent magnets. The cyclic motion of a piezoelectric bimorph actuator is used to mechanically load the FSMA specimen. The corresponding change of magnetic flux induces an electrical voltage in a pick-up coil (N=2000 turns). The effects of biasing magnetic field, strain amplitude and strain velocity are investigated. An optimum magnetic field of 0.4 T exists, where the output voltage reaches 120 mV at a strain velocity of 0.006 ms-1.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

411-415

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.P. Beeby, M.J. Tudor and N.M. White, Meas. Sci. Technol. 17 (2006) R175–R195.

DOI: 10.1088/0957-0233/17/12/r01

Google Scholar

[2] G. Sebald, H. Kuwano, D. Guyomar and B. Ducharne, Smart Mater. Struct. 20 (2011) 102001.

DOI: 10.1088/0964-1726/20/10/102001

Google Scholar

[3] S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O'Donnell, C.R. Saha and S. Roy, J. Micromech. Microeng. 17 (2007) 1257-1265.

DOI: 10.1088/0960-1317/17/7/007

Google Scholar

[4] S. Roundy, P. Wright and K. Pister, Proc. ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, USA, pp.1-10.

Google Scholar

[5] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80 (2002), pp.1746-1749.

Google Scholar

[6] I. Suorsa, J. Tellinen, K. Ullakko and E. Pagounis, J. Appl. Phys. 95 (2004) 8054-8058.

DOI: 10.1063/1.1711181

Google Scholar

[7] I. Karaman, B. Basaran, H.E. Karaca, A.I. Karsilayan and Y.I. Chumlyakov, Appl. Phys. Lett. 90 (2007) 172505.

DOI: 10.1063/1.2721143

Google Scholar

[8] www. adaptamat. com.

Google Scholar

[9] Y. Ge, O. Söderberg, N. Lanska, A. Sozinov, K. Ullakko and V.K. Lindroos, J. Phys. IV France 112 (2003) 921-924.

DOI: 10.1051/jp4:20031031

Google Scholar