Synthesis and Activity of Ag-Doped Bi2WO6 Photocatalysts

Article Preview

Abstract:

Ag-doped Bi2WO6 photocatalysts were synthesized by hydrothermal method using from Bi (NO)3·5H2O, NH4VO3, and AgNO3 and further characterized by X-ray diffraction, Scanning electron microscopy, Energy dispersive X-ray detector (EDS) and UV-Vis diffusion reflectance spectra techniques. The photocatalytic activity of Ag-doped Bi2WO6 photocatalysts was evaluated by degrading RhB (10 mg/L) under visible light irradiation (λ > 420 nm). The results showed that in comparison with pure Bi2WO6 the photocatalytic activity of Ag-doped composite photocatalysts was improved significantly, and the degradation rate of RhB was increased about 26% when the Ag+ dopant concentration was 15%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

560-566

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Tang, Z.G. Zou, J.H. Ye, Efficient Photocatalysis on BaBiO3 Driven by Visible Light, J. Phys. Chem. 111 (2007) 12779-12785.

DOI: 10.1021/jp073344l

Google Scholar

[2] Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Photocatalytic properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation, J. Phys. Chem. 110 (2006) 17790-17797.

DOI: 10.1021/jp0622482

Google Scholar

[3] K. Yu, S.G. Yang, H. He, C. Sun, Visible Light-Driven Photocatalytic Degradation of Rhodamine B over NaBiO3: Pathways and Mechanism, J. Phys. Chem. 113 (2009) 10024-10032.

DOI: 10.1021/jp905173e

Google Scholar

[4] J.W. Tang, Z.G. Zou, J.H. Ye, Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catal Lett. 92(1-2) (2004) 53-56.

DOI: 10.1023/b:catl.0000011086.20412.aa

Google Scholar

[5] J. Zhu, J.G. Wang, Z.F. Bian, F.G. Cao, H.X. Li, Solvothermal synthesis of highly active Bi2WO6 visible photocatalyst, Res Chem Intermed. 35 (2009) 799-806.

DOI: 10.1007/s11164-009-0099-4

Google Scholar

[6] S. Kohtani, J. Hiro, N. Yamamoto, A. Kudo, Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation, Catal Commun. 6 (2005) 185-189.

DOI: 10.1016/j.catcom.2004.12.006

Google Scholar

[7] S. Zhang, C. Zhang, Y. Man, Y.F. Zhu, Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties, J. Solid. State. Chem. 179 (2006) 62-69.

DOI: 10.1016/j.jssc.2005.09.041

Google Scholar

[8] Y.K. Dong, K. Sujung, K. Misook, Synthesis of Bi2WO6 Nanometer Sheet Shaped and Approach to the Photocatalysis, Bull. Korean. Chem. Soc. 30(3) (2009) 630-635.

Google Scholar

[9] N. Kikugawa, L.Q. Yang, T. Matsumoto, J.H. Ye, Photoinduced degradation of organic dye over LiBiO3 under illumination of white fluorescent light, J. Mater. Res. 25(1) (2010) 177-181.

DOI: 10.1557/jmr.2010.0006

Google Scholar

[10] T. Kako, Z.G. Zou, M. Katagiri, J.H. Ye, Decomposition of Organic Compounds over NaBiO3 under Visible Light Irradiation, Chem. Mater. 19 (2007) 198-202.

DOI: 10.1002/chin.200716022

Google Scholar

[11] H.B. Fu, L.W. Zhang, W.Q. Yao, Y.F. Zhu, Photocatalytic properties of nanosized Bi2WO6 Catalysts synthesized via a hydrothermal process, Appl. Catal. B: Environ. 66 (2006) 100-110.

DOI: 10.1016/j.apcatb.2006.02.022

Google Scholar

[12] Y.Y. Li, J.P. Liu, X.T. Huang, Synthesis and Visible-Light Photocatalytic Property of Bi2WO6Hierarchical Octahedron-Like Structures, Nanoscale. Res. Lett. 3 (2008) 365-371.

DOI: 10.1007/s11671-008-9168-7

Google Scholar

[13] M.S. Gui, W.D. Zhang, Preparation and modification of hierarchical nanostructured Bi2WO6 with high visible light-induced photocatalytic activity, Nanotechnol. 22 (2011) 1-7.

Google Scholar

[14] C.X. Xu, X. Wei, Z.H. Ren, et al., Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity, Mater. Lett. 63 (2009) 2194-2197.

DOI: 10.1016/j.matlet.2009.07.014

Google Scholar

[15] J.X. Xia, H.M. Li, Z.J. Luo, et al., Self-assembly and enhanced optical absorption of Bi2WO6 nests via ionic liquid-assisted hydrothermal method, Mater. Chem. Phys. 121 (2010) 6-9.

DOI: 10.1016/j.matchemphys.2010.01.046

Google Scholar

[16] X.C. Song, Y.F. Zheng, R. Ma, et al., Photocatalytic activities of Mo-doped Bi2WO6 three-dimensional hierarchical microspheres, J. Hazard. Mater. 192 (2011) 186-191.

DOI: 10.1016/j.jhazmat.2011.05.001

Google Scholar

[17] A. Kudo, H. Satoshi, H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions, Chem. Lett. 10 (1999) 1103-1104.

DOI: 10.1246/cl.1999.1103

Google Scholar

[18] X.C. Song, Y.F. Zheng, E. Yang, et al., Photocatalytic activities of Cd-doped ZnWO4 nanorods prepared by a hydrothermal process, J. Hazard. Mater. 179 (2010) 1122-1127.

DOI: 10.1016/j.jhazmat.2010.03.123

Google Scholar

[19] B. Zhou, X. Zhao, H.J. Liu, J.H. Qu, C.P. Huang, Synthesis of visible-light sensitive M–BiVO4 (M = Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants, Sep. Purif. Technol. 77 (2011) 275-282.

DOI: 10.1016/j.seppur.2010.12.017

Google Scholar

[20] L.S. Zhang, W.Z. Wang, Z.G. Chen, L. Zhou, H.L. Xu, W. Zhu, Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, J. Mater. Chem. 17 (2007) 2526-2532.

Google Scholar

[21] A. Fumiaki, N. Kohei, A. Ryu, O. Bunsho, Preparation and Characterization of Bismuth Tungstate Polycrystalline Flake-Ball Particles for Photocatalytic Reactions, J. Phys. Chem. C . 112 (2008) 9320-9326.

DOI: 10.1021/jp801861r

Google Scholar

[22] Z.J. Zhang, W.Z. Wang, E.P. Gao, M. Shang, J.H. Xu, Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping, J. Hazard. Mater. 196 (2011) 255-262.

DOI: 10.1016/j.jhazmat.2011.09.017

Google Scholar

[23] F. Amano, K. Nogami, B. Ohtani, Visible Light-Responsive Bismuth Tungstate Photocatalysts: Effects of Hierarchical Architecture on Photocatalytic Activity, J. Phys. Chem. C. 113 (2009) 1536-1542.

DOI: 10.1021/jp808685m

Google Scholar