Preparation and Properties of Ecological Colored Cellulose Material

Article Preview

Abstract:

Ecological colored cellulose material was prepared via UV initiated photografting of acrylic acid/cationic dye system in this study. The colored cellulose material was characterized using scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). The effects of monomer concentration, photoinitiator amount, dye amount, pH value, grafting time, heating temperature and grafting method on the coloration of cellulose material were discussed. The results showed that the optimum process was as follows: the monomer concentration of 50wt%, photoinitiator amount of 3o.w.m.%, grafting time of 4min, and heating temperature of 70.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

573-577

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Klaus, Industrial Dyes: Chemistry, Properties, Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2003) 349-361.

Google Scholar

[2] K. Strikulkit and P. Larpsuriyakul, Process of dyeability modification and bleaching of cotton in a single bath. Colorration technology. 118 ( 2002) 79-84.

DOI: 10.1111/j.1478-4408.2002.tb00142.x

Google Scholar

[3] T. Zhao, Dyeing and Finishing Process and Principle(the second volume), Beijing: China Textile & Apparel Press. (2005) 71-132.

Google Scholar

[4] A. Akbari, S. Desclaux, J.C. Rouch, et al., Application of nanofiltration hollow fibre membranes, develop by photografting, to treatment of anionic dye solutions. J. Membrane Sci. 297 (2007) 243-252.

DOI: 10.1016/j.memsci.2007.03.050

Google Scholar

[5] A. Akbari, S. Desclaux, J.C. Rouch, et al., New UV-photografted nanofiltration membranes for treatment of colored textile dye effluents. J. Membrane Sci. 286 (2006) 342-350.

DOI: 10.1016/j.memsci.2006.10.024

Google Scholar

[6] F. Zhang, Y.Y. Chen, H. Lin, et al., HBP-NH2 graft cotton fiber : Praperation and salt-free dyeing properties. Carbohydrate Polymers. 74(2008)250-256.

DOI: 10.1016/j.carbpol.2008.02.006

Google Scholar

[7] A. Akbari, S. Desclaux, J.C. Remigy, et al., Treatment of textile dye effluents using a new photografted nanofiltration membrane. Desalination. 149(2002)101-107.

DOI: 10.1016/s0011-9164(02)00739-7

Google Scholar

[8] C.S. Ren, D.Z. Wang, Y.N. Wang, Improvement of the graft and dyeability of linen by DBD treatment in ambient air. J. Mater Process Tech. 206 (2008) 216-220.

DOI: 10.1016/j.jmatprotec.2007.12.012

Google Scholar

[9] M.K. Zahran, Grafting of methacrylic acid and other vinyl monomers onto cotton fabric using Ce(Ⅳ) ions-cellulose thiocarbonate redox system. J. Polym Res. 13 (2006) 65-71.

DOI: 10.1007/s10965-005-9008-8

Google Scholar

[10] N. Abidi, E. Hequet, Cotton fiber graft copolymerization using microwave plasmaⅡ. physical properties. J. Appl Polym Sci. 98 (2005) 896-902.

DOI: 10.1002/app.22195

Google Scholar

[11] L. Andreozzi, V. Castelvetro, G. Ciardelli, et al., Free radical generation upon plasma treatment of cotton fibers and their initiation efficiency in surface-graft polymerization. J. Colloid Interface Sci. 289(2005)455-465.

DOI: 10.1016/j.jcis.2005.03.058

Google Scholar

[12] Y.N. Xia, G.M. Whitesides, Soft lithography, Angew. Chem. 37 (1998) 551-575.

Google Scholar

[13] U.T. Bornscheuer, Immobilizing enzymes: how to create more suitablebiocatalysts, Angew. Chem. Int. Ed. 42 (2003) 3336-3337.

DOI: 10.1002/anie.200301664

Google Scholar

[14] P. Mitchell, A perspective on protein microarrays, Nat. Biotechnol. 20(2002)225-229.

Google Scholar