[1]
C. Comninellis, C. Pulgarin, Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes, J. Appl. Electrochemistry. 23(2) (1993). 108-112.
DOI: 10.1007/bf00246946
Google Scholar
[2]
G.H. Zhao, C. Xiao, M.C. Liu, et a1., Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 Electrode. Environ Sci. Technol. 43(5) (2009) 1480-1486.
DOI: 10.1021/es802155p
Google Scholar
[3]
X. Cui, Research on the DSA electrode which suitable to the waste water treatment, Northern Environment. 23(5) (2011) 58-59.
Google Scholar
[4]
Q. Lu, L.C. An, Q. Zhong, et al., Ru-Pd/Sn-Sb/Ti electrode properties characterization and its application in waste water treatment, Journal of Nanjing University of Technology. 34(5) (2010) 696-701 (in Chinese).
Google Scholar
[5]
X.M. Wang, F.P. Hu, J.W. Luo, et al., Research on the high catalytic electrode in catalytic oxidation echnology, Journal of Zhongyuan University of Technology. 20(1) (2009) 15-18.
Google Scholar
[6]
S. Raghu, C.A. Basha, Electrochemical treatment of procion black 5B using cylindrical flow reactor-a pilot plant study, J. Hazard. Mater. 139(2) (2007) 38l-390.
DOI: 10.1016/j.jhazmat.2006.06.082
Google Scholar
[7]
Y. Yavuz, A.S. Koparal, Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode, J. Hazard. Mater. 136(2) (2006) 296-302.
DOI: 10.1016/j.jhazmat.2005.12.018
Google Scholar
[8]
H.Z. Ma, B. Wang, Electrochemical pilot-scale plant for oil field produced wastewater by M/C/Fe electrodes for injection, J. Hazard. Mater. 132(2-3) (2006) 237-243.
DOI: 10.1016/j.jhazmat.2005.09.043
Google Scholar
[9]
J. O'M. Bock, J. Kim, Effect of contact resistance between particles on the current distribution in a packed bed electrode, J. Appl. Electrochemistry. 27(8) (1997) 890-901.
Google Scholar
[10]
Y. Xiong, C. He, H.T. Karlsson, et al., Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater containing phenol, Chemosphere 50(1) (2003) 131-136.
DOI: 10.1016/s0045-6535(02)00609-4
Google Scholar
[11]
G.L. Yu, Y.F. Zhong, Research on phenolic wastewater treatment with three-dimensional electrode, Chemical engineering and equipment. 12 (2009) 168-170 (in Chinese).
Google Scholar
[12]
Z.M. Liu, F.P. Hu, J. Li, Research on the oxidation activity bright-red X-3B catalyzed by three-dimensional particle electrode, Environmental Science and Technology. 33(1) (2010) 31-34.
Google Scholar
[13]
Y.H. Xin, G. Wei, Y.P. Wei, Preparation of composite oxide particle electrode, Journal of Beijing University of Chemical Technology(Natural Science) 37(2) (2010) 54-58 (in Chinese).
Google Scholar
[14]
T.R. Jow, J.P. Zheng, Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide, J Electrochem Soc 145(1) (1998) 49-52.
DOI: 10.1149/1.1838209
Google Scholar
[15]
X.N. Fan, Determination of Ti in flotation tailing with dantipyrylmethane monohydrate, China Molybdenum Industry. 19(6) (1995) 54-55 (in Chinese).
Google Scholar
[16]
P.F. Campbell, M.H. Ortner, C.J. Anderson, Differential thermal analysis and thermogravimetric analysis of fission product oxides and nitrates to 1500°C, Anal. Chem. 33(1) (1961) 58–61.
DOI: 10.1021/ac60169a016
Google Scholar