[1]
D.R. Clarke, Varistor ceramics, J. Am. Ceram. Soc. 82 (1999) 485-502.
Google Scholar
[2]
S. Anas, R.V. Mangalaraja, M. Poothayal, S.K. Shukla, S. Ananthakumar, Direct synthesis of varistor-grade doped nanocrystalline ZnO and its densification through a step-sintering, technique Acta Mater. 55 (2007) 5792-5801.
DOI: 10.1016/j.actamat.2007.06.047
Google Scholar
[3]
P. Duran, F. Capel, J. Tartaj, C. Moure, A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors, Adv. Mater. 14 (2002) 137-141.
DOI: 10.1002/1521-4095(20020116)14:2<137::aid-adma137>3.0.co;2-7
Google Scholar
[4]
D. Xu, L.Y. Shi, Z.H. Wu, Q.D. Zhong, X.X. Wu, Microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics by different sintering processes, J. Eur. Ceram. Soc. 29 (2009) 1789-1794.
DOI: 10.1016/j.jeurceramsoc.2008.10.020
Google Scholar
[5]
S.T. Kuo, W.H. Tuan, Y.W. Lao, C.K. Wen, H.R. Chen, Grain growth behavior of Bi2O3-Doped ZnO grains in a multilayer varistor, J. Am. Ceram. Soc. 91 (2008) 1572-1579.
DOI: 10.1111/j.1551-2916.2008.02309.x
Google Scholar
[6]
P.A. Santos, S. Maruchin, G.F. Menegoto, A.J. Zara, S.A. Pianaro, The sintering time influence on the electrical and microstructural characteristics of SnO2 varistor, Mater. Lett. 60 (2006) 1554-1557.
DOI: 10.1016/j.matlet.2005.11.090
Google Scholar
[7]
C.W. Nahm, Influence of sintering time on electrical and dielectric behavior, and DC accelerated aging characteristics of Dy3+-doped ZnO-Pr6O11-based varistors, Mater. Chem. Phys. 94 (2005) 275-282.
DOI: 10.1016/j.matchemphys.2005.04.045
Google Scholar
[8]
H. Hng, P.L. Chan, Microstructure and current-voltage characteristics of ZnO-V2O5-MnO2 varistor system, Ceram. Int. 30 (2004) 1647-1653.
DOI: 10.1016/j.ceramint.2003.12.162
Google Scholar
[9]
D. Xu, D.M. Tang, Y.H. Lin, L. Jiao, G.P. Zhao, X.N. Cheng, Influence of Yb2O3 doping on microstructural and electrical properties of ZnO-Bi2O3-based varistor ceramics, Journal of Central South University. 19 (2012) 1497-1502.
DOI: 10.1007/s11771-012-1167-2
Google Scholar
[10]
D. Xu, X.N. Cheng, G.P. Zhao, J. Yang, L.Y. Shi, Microstructure and electrical properties of Sc2O3-doped ZnO-Bi2O3-based varistor ceramics, Ceram. Int. 37 (2011) 701-706.
DOI: 10.1016/j.ceramint.2010.09.032
Google Scholar
[11]
D. Xu, X.N. Cheng, H.M. Yuan, J. Yang, Y.H. Lin, Microstructure and electrical properties of Y(NO3)3•6H2O-doped ZnO-Bi2O3-based varistor ceramics, J. Alloy. Compd. 509 (2011) 9312-9317.
DOI: 10.1016/j.jallcom.2011.07.015
Google Scholar
[12]
D. Xu, X.F. Shi, X.N. Cheng, J. Yang, Y.E. Fan, H.M. Yuan, L.Y. Shi, Microstructure and electrical properties of Lu2O3-doped ZnO-Bi2O3-based varistor ceramics, T. Nonferr. Metal. Soc. 20 (2010) 2303-2308.
DOI: 10.1016/s1003-6326(10)60645-0
Google Scholar
[13]
D. Xu, X.N. Cheng, M.S. Wang, L.Y. Shi, Microstructure and electrical properties of La2O3-doped ZnO-Bi2O3-based varistor ceramics, Advanced Materials Research. 79-82 (2009) 2007-(2010).
DOI: 10.1016/j.ceramint.2010.09.032
Google Scholar
[14]
D. Xu, X.N. Cheng, X.H. Yan, H.X. Xu, L.Y. Shi, Sintering process as relevant parameter for Bi2O3 vaporization from ZnO-Bi2O3-based varistor ceramics, T. Nonferr. Metal. Soc. 19 (2009) 1526-1532.
DOI: 10.1016/s1003-6326(09)60064-9
Google Scholar
[15]
A.H. Darvishi, University Laval, Canada, (2001).
Google Scholar
[16]
L. Cong, X. Zheng, P. Hu, S. Dan-Feng, Bi2O3 vaporization in microwave-sintered ZnO varistors, J. Am. Ceram. Soc. 90 (2007) 2791-2794.
DOI: 10.1111/j.1551-2916.2007.01848.x
Google Scholar