BiFeO3 Nanoparticles Prepared by NaNO3-Assisted Low-Heating Temperature Solid State Reaction Method

Article Preview

Abstract:

BiFeO3 nanoparticles were synthesized by a NaNO3-assisted low-heating temperature solid state reaction method. The effects of the molar ratio of added NaNO3 and the calcination temperature on the characteristics of the products were discussed. The structure, morphology, magnetic, optical and electrical properties of BiFeO3 were characterized by XRD, SEM, VSM and UV-VIS. The experimental results showed that the introduction of leachable inert inorganic salt as a hard agglomeration inhibitor in the mixture precursor led to the formation of BiFeO3 nanoparticles with uniform size. With the addition of NaNO3 in the process, the particle morphology decreased from a diameter of 300-500 nm to 80-100 nm. The BiFeO3 attained at 600 °C showed a smaller band gap (2.12 eV) and weak ferromagnetism at room temperature with a remnant magnetization value (Mr) of approximately 3.1×10-5 emu/g and a coercive filed value (Hc) of nearly 20 Oe.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

113-118

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003).

DOI: 10.1126/science.1080615

Google Scholar

[2] F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Adv. Mater. 19 (2007) 2889-2892.

DOI: 10.1002/adma.200602377

Google Scholar

[3] C. Chen, J.R. Cheng, S.W. Yu, L.J. Che, Z.Y. Meng, Hydrothermal synthesis of perovskite bismuth ferrite crystallites, J. Cryst. Growth. 291 (2006) 135-139.

DOI: 10.1016/j.jcrysgro.2006.02.048

Google Scholar

[4] S. Basu, M. Pal, D. Chakravorty, Magnetic properties of hydrothermally synthesized BiFeO3 nanoparticles, J. Magn. Magn. Mater. 320 (2008) 3361-3365.

DOI: 10.1016/j.jmmm.2008.07.012

Google Scholar

[5] S. Shetty, V. Palkar, R. Pinto, Size effect study in magnetoelectric BiFeO3 system, Pramana J. Phys. 58 (2002) 1027-1030.

DOI: 10.1007/s12043-002-0211-4

Google Scholar

[6] M. Kumar, K.L. Yadav, G.D. Varma, Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics, Mater. Lett. 62 (2008) 1159-1161.

DOI: 10.1016/j.matlet.2007.07.075

Google Scholar

[7] J.H. Xu, H. Ke, D.C. Jia, W. Wang, Y. Zhou, Low-temperature synthesis of BiFeO3 nanopowders via a sol-gel method, J. Alloy. Compd. 472 (2009) 473-477.

DOI: 10.1016/j.jallcom.2008.04.090

Google Scholar

[8] J. Wei, D. Xue, Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol-gel process, Mater. Res. Bull. 43 (2008) 3368-3373.

DOI: 10.1016/j.materresbull.2008.02.009

Google Scholar

[9] N. Das, R. Majumdar, A. Sen, H.S. Maiti, Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques, Mater. Lett. 61 (2007) 2100-2104.

DOI: 10.1016/j.matlet.2006.08.026

Google Scholar

[10] S. Farhadi, M. Zaidi, Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: A novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions, J. Mol. Catal. A: Chem. 299 (2009).

DOI: 10.1016/j.molcata.2008.10.013

Google Scholar

[11] I. Szafraniak, M. Polomska, B. Hilczer, A. Pietraszko, L. Kepinski, Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis, J. Eur. Ceram. Soc. 27 (2007) 4399-4402.

DOI: 10.1016/j.jeurceramsoc.2007.02.163

Google Scholar

[12] Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, Synthesis of Bismuth Ferrite Nanoparticles via a Wet Chemical Route at Low Temperature, J. Nanomater. 2011 (2011) 1-6.

DOI: 10.1155/2011/797639

Google Scholar

[13] T. Xian, H. Yang, X. Shen, J.L. Jiang, Z.Q. Wei, W.J. Feng, Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route, J. Alloy. Compd. 480 (2009) 889-892.

DOI: 10.1016/j.jallcom.2009.02.068

Google Scholar

[14] X.B. He, L.A. Gao, Synthesis of pure phase BiFeO3 powders in molten alkali metal nitrates, Ceram Int 35 (2009) 975-978.

DOI: 10.1016/j.ceramint.2008.04.013

Google Scholar

[15] J. Zhou, D. Su, J. Luo, M. Zhong, Synthesis of aluminum borate nanorods by a low-heating-temperature solid-state precursor method, Mater. Res. Bull. 44 (2009) 224-226.

DOI: 10.1016/j.materresbull.2008.03.023

Google Scholar

[16] Y. Cao, W. Pan, Y. Zong, D. Jia, Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction, Sensors and Actuators B 138 (2009) 480-484.

DOI: 10.1016/j.snb.2009.03.015

Google Scholar

[17] R.H. Qin, F.S. Li, W. Jiang, L. Liu, Salt-assisted Low Temperature Solid State Synthesis of High Surface Area CoFe2O4 Nanoparticles, J Mater Sci Technol 25 (2009) 69-72.

Google Scholar

[18] J.L. Chen, Y.X. Luo, X.H. Liu, X.J. Yang, L.D. Lu, X. Wang, Preparation of nano-Bi2O3 by room-temperature solid-station reaction, Chin. Mater. Rev. 17 (2003) 82-83.

Google Scholar

[19] Z.H. Jing, S.H. Wu, Preparation and gas sensing properties of γ-Fe2O3 nanopowders by solid-state grinding method at room temperature, Chin. J. Inorg. Chem. 22 (2006) 483-487.

Google Scholar

[20] L.M. Shen, L.C. Guo, N.Z. Bao, K. Yanagisawa, Salt-assisted solid-state chemical reaction. Synthesis of ZnO nanocrystals, Chem. Lett. 32 (2003) 826-827.

DOI: 10.1246/cl.2003.826

Google Scholar

[21] Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z G Liu, Roomtemperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84 (2004) 1731-1733.

DOI: 10.1063/1.1667612

Google Scholar

[22] S.M. Selbach, M.A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3, Chem. Mater. 21 (2009) 169-173.

Google Scholar

[23] R.Q. Guo, L. Fang, W. Dong, F.G. Zheng, M.R. Shen, Magnetically separable BiFeO3 nanoparticles with a g-Fe2O3 parasitic phase: controlled fabrication and enhanced visible-light photocatalytic activity, J. Mater. Chem. 21 (2011) 18645-18652.

DOI: 10.1039/c1jm13072b

Google Scholar

[24] L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, Y. Wang, Visible light responsive perovskite BiFeO3 pills and rods with dominant {111}c facets, Cryst. Growth Des. 11 (2011) 1049-1053.

DOI: 10.1021/cg101144s

Google Scholar

[25] P. Chen, N.J. Podraza, X.S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D.G. Schlom, J.L. Musfeldt, Optical properties of quasi-tetragonal BiFeO3 thin films, Appl. Phys. Lett. 96 (2010) 131907.

DOI: 10.1063/1.3364133

Google Scholar