[1]
J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003).
DOI: 10.1126/science.1080615
Google Scholar
[2]
F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Adv. Mater. 19 (2007) 2889-2892.
DOI: 10.1002/adma.200602377
Google Scholar
[3]
C. Chen, J.R. Cheng, S.W. Yu, L.J. Che, Z.Y. Meng, Hydrothermal synthesis of perovskite bismuth ferrite crystallites, J. Cryst. Growth. 291 (2006) 135-139.
DOI: 10.1016/j.jcrysgro.2006.02.048
Google Scholar
[4]
S. Basu, M. Pal, D. Chakravorty, Magnetic properties of hydrothermally synthesized BiFeO3 nanoparticles, J. Magn. Magn. Mater. 320 (2008) 3361-3365.
DOI: 10.1016/j.jmmm.2008.07.012
Google Scholar
[5]
S. Shetty, V. Palkar, R. Pinto, Size effect study in magnetoelectric BiFeO3 system, Pramana J. Phys. 58 (2002) 1027-1030.
DOI: 10.1007/s12043-002-0211-4
Google Scholar
[6]
M. Kumar, K.L. Yadav, G.D. Varma, Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics, Mater. Lett. 62 (2008) 1159-1161.
DOI: 10.1016/j.matlet.2007.07.075
Google Scholar
[7]
J.H. Xu, H. Ke, D.C. Jia, W. Wang, Y. Zhou, Low-temperature synthesis of BiFeO3 nanopowders via a sol-gel method, J. Alloy. Compd. 472 (2009) 473-477.
DOI: 10.1016/j.jallcom.2008.04.090
Google Scholar
[8]
J. Wei, D. Xue, Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol-gel process, Mater. Res. Bull. 43 (2008) 3368-3373.
DOI: 10.1016/j.materresbull.2008.02.009
Google Scholar
[9]
N. Das, R. Majumdar, A. Sen, H.S. Maiti, Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques, Mater. Lett. 61 (2007) 2100-2104.
DOI: 10.1016/j.matlet.2006.08.026
Google Scholar
[10]
S. Farhadi, M. Zaidi, Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: A novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions, J. Mol. Catal. A: Chem. 299 (2009).
DOI: 10.1016/j.molcata.2008.10.013
Google Scholar
[11]
I. Szafraniak, M. Polomska, B. Hilczer, A. Pietraszko, L. Kepinski, Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis, J. Eur. Ceram. Soc. 27 (2007) 4399-4402.
DOI: 10.1016/j.jeurceramsoc.2007.02.163
Google Scholar
[12]
Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, Synthesis of Bismuth Ferrite Nanoparticles via a Wet Chemical Route at Low Temperature, J. Nanomater. 2011 (2011) 1-6.
DOI: 10.1155/2011/797639
Google Scholar
[13]
T. Xian, H. Yang, X. Shen, J.L. Jiang, Z.Q. Wei, W.J. Feng, Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route, J. Alloy. Compd. 480 (2009) 889-892.
DOI: 10.1016/j.jallcom.2009.02.068
Google Scholar
[14]
X.B. He, L.A. Gao, Synthesis of pure phase BiFeO3 powders in molten alkali metal nitrates, Ceram Int 35 (2009) 975-978.
DOI: 10.1016/j.ceramint.2008.04.013
Google Scholar
[15]
J. Zhou, D. Su, J. Luo, M. Zhong, Synthesis of aluminum borate nanorods by a low-heating-temperature solid-state precursor method, Mater. Res. Bull. 44 (2009) 224-226.
DOI: 10.1016/j.materresbull.2008.03.023
Google Scholar
[16]
Y. Cao, W. Pan, Y. Zong, D. Jia, Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction, Sensors and Actuators B 138 (2009) 480-484.
DOI: 10.1016/j.snb.2009.03.015
Google Scholar
[17]
R.H. Qin, F.S. Li, W. Jiang, L. Liu, Salt-assisted Low Temperature Solid State Synthesis of High Surface Area CoFe2O4 Nanoparticles, J Mater Sci Technol 25 (2009) 69-72.
Google Scholar
[18]
J.L. Chen, Y.X. Luo, X.H. Liu, X.J. Yang, L.D. Lu, X. Wang, Preparation of nano-Bi2O3 by room-temperature solid-station reaction, Chin. Mater. Rev. 17 (2003) 82-83.
Google Scholar
[19]
Z.H. Jing, S.H. Wu, Preparation and gas sensing properties of γ-Fe2O3 nanopowders by solid-state grinding method at room temperature, Chin. J. Inorg. Chem. 22 (2006) 483-487.
Google Scholar
[20]
L.M. Shen, L.C. Guo, N.Z. Bao, K. Yanagisawa, Salt-assisted solid-state chemical reaction. Synthesis of ZnO nanocrystals, Chem. Lett. 32 (2003) 826-827.
DOI: 10.1246/cl.2003.826
Google Scholar
[21]
Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z G Liu, Roomtemperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84 (2004) 1731-1733.
DOI: 10.1063/1.1667612
Google Scholar
[22]
S.M. Selbach, M.A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3, Chem. Mater. 21 (2009) 169-173.
Google Scholar
[23]
R.Q. Guo, L. Fang, W. Dong, F.G. Zheng, M.R. Shen, Magnetically separable BiFeO3 nanoparticles with a g-Fe2O3 parasitic phase: controlled fabrication and enhanced visible-light photocatalytic activity, J. Mater. Chem. 21 (2011) 18645-18652.
DOI: 10.1039/c1jm13072b
Google Scholar
[24]
L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, Y. Wang, Visible light responsive perovskite BiFeO3 pills and rods with dominant {111}c facets, Cryst. Growth Des. 11 (2011) 1049-1053.
DOI: 10.1021/cg101144s
Google Scholar
[25]
P. Chen, N.J. Podraza, X.S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D.G. Schlom, J.L. Musfeldt, Optical properties of quasi-tetragonal BiFeO3 thin films, Appl. Phys. Lett. 96 (2010) 131907.
DOI: 10.1063/1.3364133
Google Scholar