Advances in Numerical and Experimental Study of Dielectrophoretic Assembly of Carbon Nanotubes

Article Preview

Abstract:

Study of the effect of dielectrophoresis (DEP) parameters is important in high-precision DEP assembly of carbon nanotubes (CNTs). The DEP parameters usually considered in the literature include the magnitude and frequency of the applied voltage, the assembly time, the concentration of the CNT suspension, and the geometry of the electrodes. This paper reviews the current progresses on both numerical and experimental study of the CNT assembly by DEP, especially the influence of the DEP parameters on the assembly process and results. The review shows that the magnitude of the applied voltage affects the DEP force and the number of deposited CNTs. The assembly time and CNT concentration influence the density of deposited CNTs. Different electrode geometries have an effect on the distribution of the electric field. The electrode spacing changes the field strength and the direction of the field gradient. The related discussion is presented as well.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

430-435

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.J. Dai, Nanotube growth and characterization, Appl. Phys. Lett. 80 (2001) 29-53.

Google Scholar

[2] N.R. Franklin, Y. Li, R.J. Chen, A. Javey, H.J. Dai, Patterned growth of single-walled carbon nanotubes on full 4-inch wafers, Appl. Phys. Lett. 79 (2001) 4571-4573.

DOI: 10.1063/1.1429294

Google Scholar

[3] L. Delzeit, C.V. Nguye, R.M. Stevens, J. Han, M. Meyyappan, Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy, Nanotechnology 13 (2002) 280-285.

DOI: 10.1088/0957-4484/13/3/308

Google Scholar

[4] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637-640.

DOI: 10.1126/science.287.5453.637

Google Scholar

[5] T. Hertel, R. Martel, Avouris, Manipulation of individual carbon nanotubes and their interaction with surface, J. Phys. Chem. B. 102 (1998) 910-915.

DOI: 10.1021/jp9734686

Google Scholar

[6] J.C. Lewenstein, T.P. Burgin, A. Ribayrol, L.A. Nagahara, R.K. Tsui, High-yield selective placement of carbon nanotubes on pre-patterned electrodes, Nano Lett. 2 (2002) 443-446.

DOI: 10.1021/nl015690z

Google Scholar

[7] S.G. Rao, L. Huang, W. Setyawan, S. H Hong, Nanotube electronics: Large-scale assembly of carbon nanotubes, Nature 425 (2003) 36-37.

DOI: 10.1038/425036a

Google Scholar

[8] J.Q. Li, Q. Zhang, D.J. Yang, J.Z. Tian, Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method, Carbon 42 (2004) 2263-2267.

DOI: 10.1016/j.carbon.2004.05.002

Google Scholar

[9] J. Tang, G. Yang, Q. Zhang, A. Parhat, B. Maynor, J. Liu, L.C. Qin, O. Zhou, Rapid and reproducible fabrication of carbon nanotube AFM probes by dielectrophoresis, Nano Lett. 5 (2005) 11-14.

DOI: 10.1021/nl048803y

Google Scholar

[10] A. Subramanian, L.X. Dong, J. Tharian, U. Sennhauser, B.J. Nelson, Batch fabrication of carbon nanotube bearings, Nanotechnology 18 (2007) 075703.

DOI: 10.1088/0957-4484/18/7/075703

Google Scholar

[11] C.S. Han, H.W. Seo, H.W. Lee, S.H. Kim, Y.K. Kwak, Electrokinetic deposition of individual carbon nanotube onto an electrode gap, Int. J. Precis. Eng. Man. 7 (2006) 42-46.

Google Scholar

[12] J.E. Kim and C.S. Han, Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis, Nanotechnology 16 (2005) 2245-2250.

DOI: 10.1088/0957-4484/16/10/046

Google Scholar

[13] M. Dimaki, P. Bøggild, Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study, Nanotechnology 15 (2004) 1-8.

DOI: 10.1088/0957-4484/15/8/039

Google Scholar

[14] A. Ramos, H. Morgan, N. Green, A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures, Appl. Phys. Lett. 31 (1998) 2338-2353.

DOI: 10.1088/0022-3727/31/18/021

Google Scholar

[15] U.C. Wejinya, N. Xi, K. Lai, J.B. Zhang, Y.T. Shen, Design and generation of DEP force for assembly of CNT-based nano devices, Proceedings of the 2008 IEEE/RSJ Int. Conf. on intelligent robots and systems, Nice, France (2008) 925-930.

DOI: 10.1109/iros.2008.4651059

Google Scholar

[16] S.G. Kwon, S.H. Kim, K.H. Kim, M.C. Kang, H.W. Lee, Distribution of electric field for carbon nanotube assembly: Simulation (I), Trans. Nonferrous Met. Soc. 21 (2011) 117-120.

DOI: 10.1016/s1003-6326(11)61073-x

Google Scholar

[17] H.W. Seo, C.S. Han, D.G. Choi, K.S. Kim, Y.H. Lee, Controlled assembly of single SWNTs bundle using dielectrophoresis, Microelectron. Eng. 81 (2005) 83-89.

DOI: 10.1016/j.mee.2005.04.001

Google Scholar

[18] D.D. Xu, A. Subramanian, L.X. Dong, B.J. Nelson, Shaping nanoelectrodes for high-precision dielectrophoretic assembly of carbon nanotubes, IEEE T. Nanotechnol. 8 (2009) 449-456.

DOI: 10.1109/tnano.2009.2015295

Google Scholar

[19] J.H. Chung, K.H. Lee, J.H. Lee, R.S. Ruoff, Toward large-scale integration of carbon nanotubes, Langmuir 20 (2004) 3011-3017.

DOI: 10.1021/la035726y

Google Scholar

[20] V. Mathur, J. Li, J. Therrien, W.D. Goodhue, FEM simulation of nanotubes manipulation using dielectrophoreseis, Proceedings of the COMSOL Conference, Boston (2007).

Google Scholar

[21] L.B. An, C.R. Friedrich, Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes, Appl. Phys. Lett. 105 (2009) 074314.

Google Scholar

[22] J.Q. Li, Q. Zhang, N. Peng, Q. Zhu, Manipulation of carbon nanotubes using AC dielectrophoresis, Appl. Phys. Lett. 86 (2005) 153116.

DOI: 10.1063/1.1901825

Google Scholar

[23] Z.B. Zhang, S.L. Zhang, E.E.B. Campbell, Dielectrophoretic behavior of ionic surfactant-solubilized carbon nanotubes, Chem. Phys. Lett. 421 (2006) 11-15.

DOI: 10.1016/j.cplett.2006.01.053

Google Scholar

[24] F. Aldaeus, Y. Lin, G. Amberg, J. Roeraade, Multi-step dielectrophoresis for separation of particle, J. Chromatogr A. 1131 (2006) 261-266.

DOI: 10.1016/j.chroma.2006.07.022

Google Scholar